905 resultados para Cement plants -- Equipment and supplies -- Mathematical models
Resumo:
The Scilla rock avalanche occurred on 6 February 1783 along the coast of the Calabria region (southern Italy), close to the Messina Strait. It was triggered by a mainshock of the Terremoto delle Calabrie seismic sequence, and it induced a tsunami wave responsible for more than 1500 casualties along the neighboring Marina Grande beach. The main goal of this work is the application of semi-analtycal and numerical models to simulate this event. The first one is a MATLAB code expressly created for this work that solves the equations of motion for sliding particles on a two-dimensional surface through a fourth-order Runge-Kutta method. The second one is a code developed by the Tsunami Research Team of the Department of Physics and Astronomy (DIFA) of the Bologna University that describes a slide as a chain of blocks able to interact while sliding down over a slope and adopts a Lagrangian point of view. A wide description of landslide phenomena and in particular of landslides induced by earthquakes and with tsunamigenic potential is proposed in the first part of the work. Subsequently, the physical and mathematical background is presented; in particular, a detailed study on derivatives discratization is provided. Later on, a description of the dynamics of a point-mass sliding on a surface is proposed together with several applications of numerical and analytical models over ideal topographies. In the last part, the dynamics of points sliding on a surface and interacting with each other is proposed. Similarly, different application on an ideal topography are shown. Finally, the applications on the 1783 Scilla event are shown and discussed.
Resumo:
Experimental modal analysis techniques are applied to characterize the planar dynamic behavior of two spur planetary gears. Rotational and translational vibrations of the sun gear, carrier, and planet gears are measured. Experimentally obtained natural frequencies, mode shapes, and dynamic response are compared to the results from lumped-parameter and finite element models. Two qualitatively different classes of mode shapes in distinct frequency ranges are observed in the experiments and confirmed by the lumped-parameter model, which considers the accessory shafts and fixtures in the system to capture all of the natural frequencies and modes. The finite element model estimates the high-frequency modes that have significant tooth mesh deflection without considering the shafts and fixtures. The lumped-parameter and finite element models accurately predict the natural frequencies and modal properties established by experimentation. Rotational, translational, and planet mode types presented in published mathematical studies are confirmed experimentally. The number and types of modes in the low-frequency and high-frequency bands depend on the degrees of freedom in the central members and planet gears, respectively. The accuracy of natural frequency prediction is improved when the planet bearings have differing stiffnesses in the tangential and radial directions, consistent with the bearing load direction. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
STUDY DESIGN: In vitro testing of vertebroplasty techniques including pulsed jet-lavage for fat and marrow removal in human cadaveric lumbar and thoracic vertebrae. OBJECTIVE: To develop jet-lavage techniques for vertebroplasty and investigate their effect on cement distribution, injection forces, and fat embolism. SUMMARY OF BACKGROUND DATA: The main complications of cement vertebroplasty are cement leakage and pulmonary fat embolism, which can have fatal consequences and are difficult to prevent reliably by current vertebroplasty techniques. METHODS: Twenty-four vertebrae (Th8-L04) from 5 osteoporotic cadaver spines were grouped in triplets depending on bone mineral density (BMD). Before polymethylmethacrylate (PMMA) vertebroplasty, a pulsatile jet-lavage for removal of intertrabecular fat and bone marrow was performed in 2 groups with 8 specimens each, performing radial and axial irrigation from the biopsy needles. One hundred mL of Ringer solution were injected through 1 pedicle and regained by low vacuum via the contralateral pedicle. Eight control vertebrae were not irrigated. All specimens underwent standardized PMMA cement augmentation injecting 20% of the vertebral volume. Injection forces, cement distribution, and extravasations were quantified. RESULTS: All irrigation solution could be retrieved with the vacuum applied. A Kruskal-Wallis test revealed significantly higher injection forces of the control group as compared with the irrigated groups (P = 0.021). Dilatation of the syringe at forces above 300 N occurred in 75% of the untreated compared with 12.5% of the lavaged specimens. CT distribution analysis showed more homogenous cement distribution of the cement and significantly less extravasation in the irrigated specimens. CONCLUSION: The developed lavage technique for vertebroplasty showed to be feasible and reproducible. The reduction of injection forces would allow the use of more viscous PMMA cement lowering the risk for cement embolization and results in a safer procedure. The wash-out of bone marrow and the possible reduction of pulmonary fat embolism have to be verified with in vivo models.
Resumo:
STUDY DESIGN: The biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis. OBJECTIVES: To compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables. SUMMARY OF BACKGROUND DATA: Previous FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation. METHODS: Twelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances. RESULTS: Cement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance. CONCLUSION: The developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.
Resumo:
Invasive exotic plants have altered natural ecosystems across much of North America. In the Midwest, the presence of invasive plants is increasing rapidly, causing changes in ecosystem patterns and processes. Early detection has become a key component in invasive plant management and in the detection of ecosystem change. Risk assessment through predictive modeling has been a useful resource for monitoring and assisting with treatment decisions for invasive plants. Predictive models were developed to assist with early detection of ten target invasive plants in the Great Lakes Network of the National Park Service and for garlic mustard throughout the Upper Peninsula of Michigan. These multi-criteria risk models utilize geographic information system (GIS) data to predict the areas at highest risk for three phases of invasion: introduction, establishment, and spread. An accuracy assessment of the models for the ten target plants in the Great Lakes Network showed an average overall accuracy of 86.3%. The model developed for garlic mustard in the Upper Peninsula resulted in an accuracy of 99.0%. Used as one of many resources, the risk maps created from the model outputs will assist with the detection of ecosystem change, the monitoring of plant invasions, and the management of invasive plants through prioritized control efforts.
Resumo:
Background: WHO's 2013 revisions to its Consolidated Guidelines on antiretroviral drugs recommend routine viral load monitoring, rather than clinical or immunological monitoring, as the preferred monitoring approach on the basis of clinical evidence. However, HIV programmes in resource-limited settings require guidance on the most cost-effective use of resources in view of other competing priorities such as expansion of antiretroviral therapy coverage. We assessed the cost-effectiveness of alternative patient monitoring strategies. Methods: We evaluated a range of monitoring strategies, including clinical, CD4 cell count, and viral load monitoring, alone and together, at different frequencies and with different criteria for switching to second-line therapies. We used three independently constructed and validated models simultaneously. We estimated costs on the basis of resource use projected in the models and associated unit costs; we quantified impact as disability-adjusted life years (DALYs) averted. We compared alternatives using incremental cost-effectiveness analysis. Findings: All models show that clinical monitoring delivers significant benefit compared with a hypothetical baseline scenario with no monitoring or switching. Regular CD4 cell count monitoring confers a benefit over clinical monitoring alone, at an incremental cost that makes it affordable in more settings than viral load monitoring, which is currently more expensive. Viral load monitoring without CD4 cell count every 6—12 months provides the greatest reductions in morbidity and mortality, but incurs a high cost per DALY averted, resulting in lost opportunities to generate health gains if implemented instead of increasing antiretroviral therapy coverage or expanding antiretroviral therapy eligibility. Interpretation: The priority for HIV programmes should be to expand antiretroviral therapy coverage, firstly at CD4 cell count lower than 350 cells per μL, and then at a CD4 cell count lower than 500 cells per μL, using lower-cost clinical or CD4 monitoring. At current costs, viral load monitoring should be considered only after high antiretroviral therapy coverage has been achieved. Point-of-care technologies and other factors reducing costs might make viral load monitoring more affordable in future. Funding: Bill & Melinda Gates Foundation, WHO.
Resumo:
In spite of the movement to turn political science into a real science, various mathematical methods that are now the staples of physics, biology, and even economics are thoroughly uncommon in political science, especially the study of civil war. This study seeks to apply such methods - specifically, ordinary differential equations (ODEs) - to model civil war based on what one might dub the capabilities school of thought, which roughly states that civil wars end only when one side’s ability to make war falls far enough to make peace truly attractive. I construct several different ODE-based models and then test them all to see which best predicts the instantaneous capabilities of both sides of the Sri Lankan civil war in the period from 1990 to 1994 given parameters and initial conditions. The model that the tests declare most accurate gives very accurate predictions of state military capabilities and reasonable short term predictions of cumulative deaths. Analysis of the model reveals the scale of the importance of rebel finances to the sustainability of insurgency, most notably that the number of troops required to put down the Tamil Tigers is reduced by nearly a full order of magnitude when Tiger foreign funding is stopped. The study thus demonstrates that accurate foresight may come of relatively simple dynamical models, and implies the great potential of advanced and currently unconventional non-statistical mathematical methods in political science.
Resumo:
Second Edition. Pp.5-61 General Surgical Necessities, Gauze, Antiseptic Sundries, Surgical Sundries, Rubber Bandages, Catheters, Bougies, Splints, Tents, Emergency Bags, Surgeon's Needles, Operating Instruments, Amputating, Forceps, Aspiration, Cases, Catheters and Directors, Pocket Case Instruments, Dissecting and Post-Mortem Pp.62-118 General Operating - Osteotomy, Mastoid, Trephining, Eye Instruments, Aural, Nasal, Mouth and Throat, Tooth Forceps, Laryngoscopic Sets, Hydraulic Air Compressor, Variocele, Genito Urinary Pp. 119-167 Genito Urinary-Lithotrity, Alimentary, Anal and Rectal, Gynaecological, Pessaries, Microscopes, Syringes Pp.168-205 Chemical Apparatus and Glassware, Physician's Cabinets, Office Furniture, Operating Chairs and Tables, Hospital Beds, Cautery, Electrolytic, Batteries Pp.206-246 Cases, Varicose, Braces, Abdominal Supporters, Trusses, Invalid Chairs and Supplies, Sterilizers, Saddle-Bags, Deformity Apparatus Advertisements: Bandages, Abdominal Supporters, Rubber Supplies, Bags, Batteries, Cotton, Microscopes, Hypodermic Tablets, Atomizers, Furniture, Sterilizers, Syringes
Resumo:
Human preimplantation embryos exhibit high levels of apoptotic cells and high rates of developmental arrest during the first week in vitro. The relation between the two is unclear and difficult to determine by conventional experimental approaches, partly because of limited numbers of embryos. We apply a mixture of experiment and mathematical modeling to show that observed levels of cell death can be reconciled with the high levels of embryo arrest seen in the human only if the developmental competence of embryos is already established at the zygote stage, and environmental factors merely modulate this. This suggests that research on improving in vitro fertilization success rates should move from its current concentration on optimizing culture media to focus more on the generation of a healthy zygote and on understanding the mechanisms that cause chromosomal and other abnormalities during early cleavage stages.
Resumo:
This research studies the self-heating produced by the application of an electric current to conductive cement pastes with carbonaceous materials. The main parameters studied were: type and percentage of carbonaceous materials, effect of moisture, electrical resistance, power consumption, maximum temperature reached and its evolution and ice melting kinetics are the main parameters studied. A mathematical model is also proposed, which predicts that the degree of heating is adjustable with the applied voltage. Finally, the results have been applied to ensure that cementitious materials studied are feasible to control ice layers in transportation infrastructures.
Resumo:
Mode of access: Internet.
Resumo:
"June 1977."
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.