940 resultados para Cement additives


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Donor-doped n-(Ba,Pb)TiO3 polycrystalline ceramics exhibit distinctly two-step positive temperature coefficient of resistance (PTCR) characteristics when formulated with suitable combinations of B2O3 and Al2O3 as grain boundary modifiers by heterogeneous addition. B2O3 or Al2O3 when added singularly resulted in either steep or broad PTCR jumps respectively across the phase transition. The two-step PTCR is attributed to the activation of the acceptor states, created through B2O3 and Al2O3, for various temperature regimes above the Curie point (T-c). The changing pattern of trap states is evident from the presence of Ti4+-O--Al3+ type hole centres in the grain boundary layer regions, identified in the electron paramagnetic resonance (EPR) spectra. That charge redistribution occurs among the inter-band gap defect states on crossing the Curie temperature is substantiated by the temperature coefficient in the EPR results. Capacitance-voltage results clearly show that there is an increase in the density of trap states with the addition of B2O3 and Al2O3. The spread in energy values of these trap states is evident from the large change in barrier height (phi similar or equal to 0.25-0.6 eV) between 500 and 650 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the preparation of acicular hydrogoethite (alpha -FeOOH.xH(2)O, 0.1 < x < 0.22) particles of 0.3-1 mm length has been optimized by air oxidation of Fe( II) hydroxide gel precipitated from aqueous (NH4)(2)Fe(SO4)(2) solutions containing 0.005-0.02 atom% of cationic Pt, Pd or Rh additives as morphology controlling agents. Hydrogoethite particles are evolved from the amorphous ferrous hydroxide gel by heterogeneous nucleation and growth. Preferential adsorption of additives on certain crystallographic planes thereby retarding the growth in the perpendicular direction, allows the particles to acquire acicular shapes with high aspect ratios of 8-15. Synthetic hydrogoethite showed a mass loss of about 14% at similar to 280 degreesC, revealing the presence of strongly coordinated water of hydration in the interior of the goethite crystallites. As evident from IR spectra, excess H2O molecules (0.1- 0.22 per formula unit) are located in the strands of channels formed in between the double ribbons of FeO6 octahedra running parallel to the c- axis. Hydrogoethite particles constituted of multicrystallites are formed with Pt as additive, whereas single crystallite particles are obtained with Pd (or Rh). For both dehydroxylation as well as H-2 reduction, a lower reaction temperature (similar to 220 degreesC) was observed for the former (Pt treated) compared to the latter (Pd or Rh) (similar to 260 degreesC). Acicular magnetite (Fe3O4) was prepared either by reducing hydrogoethite (magnetite route) or dehydroxylating hydrogoethite to hematite and then reducing it to magnetite (hematite- magnetite route). According to TEM studies, preferential dehydroxylation of hydrogoethite along < 010 > leads to microporous hematite. Maghemite (gamma -Fe2O3 (-) (delta), 0 < < 0.25) was obtained by reoxidation of magnetite. The micropores are retained during the topotactic transformation to magnetite and finally to maghemite, whereas cylindrical mesopores are formed due to rearrangement of the oxygen sublattice from hexagonal to cubic close packing during the conversion of hydrogoethite to magnetite and then to maghemite. Accordingly, three different types of maghemite particles are realized: strongly oriented multicrystalline particles, single crystalline acicular particles with micropores or crystallites having mesopores. Higher values of saturation magnetization ((s) = 74 emu g(-1)) and coercivity (H-c = 320 Oe) are obtained for single crystalline mesoporous particles. In the other cases, the smaller size of particles and larger distribution of micropores decreases sigma (s) considerably ( < 60 emu g(-1)) due to relaxation effects of spins on the surface atoms as revealed by Mossbauer spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rammed earth is an energy efficient and low carbon emission alternative for load bearing walls. This paper attempts to examine the influence of clay content and moisture content on the compressive strength of cement stabilised rammed earth (CSRE) through experimental investigations. Compressive strength of CSRE prisms was monitored both in dry and wet (saturated) conditions. Major conclusions of the study are:(a) Optimum clay content for maximum compressive strength is about 16%, (b) the strength of CSRE is sensitive to the moisture content at the time of testing, (c) Strength in saturated condition is less than half of the dry strength and (d) Water absorption (saturated water content) increases as the clay content of the soil mix increases and it is in the range of 12 to 16% for the CRSE prisms with 8% cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is aimed at studying the influence of electrolyte chemistry on the voltage-time (V-T) response characteristics, phase structure, surface morphology, film growth rate and corrosion properties of titania films fabricated by micro arc oxidation (MAO) on Cp Ti. The titania films were developed with a sodium phosphate based reference electrolyte comprising the additives such as sodium carbonate (Na2CO3), sodium nitrite (NaNO2) and urea (CO(NH2)(2)). The phase composition, surface morphology, elemental composition and thickness of the films were assessed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The corrosion characteristics of the fabricated films were studied under Kokubo simulated body fluid (SBF) condition by potentiodynamic polarization, long term potential and linear polarization resistance (LPR) measurements and electrochemical impedance spectroscopy (EIS) methods. In addition, the corrosion characteristics of the grown films were analyzed by EIS curve fitting and equivalent circuit modeling. Salt spray test (SST) as per ASTM B 117 standard was also conducted to verify the corrosion resistance of the grown films. The XRD results showed that the titania films were composed of both anatase and rutile phases at different proportions. Besides, the films grown in carbonate and nitrite containing electrolyte systems showed an enhanced growth of their rutile phase in the 1 0 1] direction which could be attributed to the modifications introduced in the growth process by the abundant oxygen available during the process. The SEM-EDX and elemental mapping results showed that the respective electrolyte borne elements were incorporated and distributed uniformly in all the films. Among all the grown films under study, the film developed in carbonate containing electrolyte system exhibited considerably improved corrosion resistance due to suitable modifications in its structural and morphological characteristics. The rate of anatase to rutile phase transformation and the rutile growth direction were strongly influenced by the abundant oxidizing species available during the film growth process. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notched three point bend (TPB) specimens made with plain concrete and cement mortar were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and simultaneously acoustic emissions (AE) released were recorded during the experiments. Amplitude distribution analysis of AE released during concrete was carried out to study the development of fracture process in concrete and mortar specimens. The slope of the log-linear frequency-amplitude distribution of AE is known as the AE based b-value. The AE based b-value was computed in terms of physical process of time varying applied load using cumulative frequency distribution (Gutenberg-Richter relationship) and discrete frequency distribution (Aki's method) of AE released during concrete fracture. AE characteristics of plain concrete and cement mortar were studied and discussed and it was observed that the AE based b-value analysis serves as a tool to identify the damage in concrete structural members. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most studies involving cement-stabilized soil blocks (CSSB) concern material properties, such as the characteristics of erosion and strength and how the composition of the block affects these properties. Moreover, research has been conducted on the performance of various mortars, investigating their material properties and the tensile bond strength between CSSB units and mortar. In contrast, very little is currently known about CSSB masonry structural behavior. Because structural design codes of traditional masonry buildings were well developed over the past century, many of the same principles may be applicable to CSSB masonry buildings. This paper details the topic of flexural behavior of CSSB masonry walls and whether the Masonry Standards Joint Committee (MSJC) code can be applied to this material for improved safety of such buildings. DOI: 10.1061/(ASCE)MT.1943-5533.0000566. (C) 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of spectral analysis of surface wave tests were performed on asphaltic and cement concrete pavements by dropping freely a 6.5kg spherical mass, having a radius of 5.82cm, from a height (h) of 0.51.5m. The maximum wavelength ((max)), up to which the shear wave velocity profile can be detected with the usage of surface wave measurements, increases continuously with an increase in h. As compared to the asphaltic pavement, the values of (max) and (min) become greater for the chosen cement concrete pavement, where (min) refers to the minimum wavelength. With h=0.5m, a good assessment of the top layers of both the present chosen asphaltic and the cement concrete pavements, including soil subgrade, can be made. For a given h, as compared to the selected asphaltic pavement, the first receiver in case of the chosen cement concrete pavement needs to be placed at a greater distance from the source. Inverse analysis has also been performed to characterise the shear wave velocity profile of different layers of the pavements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties and electrical conductivity of highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) are reported as a function of the processing additive conditions. The addition of dimethyl sulfoxide (DMSO) increases the conductivity and modifies the dielectric response as observed from the ellipsometric studies. Also the surface roughness and morphology change with the composition of PEDOT: PSS: DMSO and film deposition conditions. The real part of the dielectric function becomes negative in highly conducting samples, indicating the presence of delocalized charge carriers. The real and imaginary parts of the refractive index were determined as a function of wavelength. The results are consistent with the increase in conductivity upon the addition of DMSO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports the acoustic emission (AE) study of precursory micro-cracking activity and fracture behaviour of quasi-brittle materials such as concrete and cement mortar. In the present study, notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/sec and the accompanying AE were recorded using a 8 channel AE monitoring system. The various AE statistical parameters including AE event rate , AE energy release rate , amplitude distribution for computing the AE based b-value, cumulative energy (I E) pound and ring down count (RDC) were used for the analysis. The results show that the micro-cracks initiated and grew at an early stage in mortar in the pre peak regime. While in the case of concrete, the micro-crack growth occurred during the peak load regime. However, both concrete and mortar showed three distinct stages of micro-cracking activity, namely initiation, stable growth and nucleation prior to the final failure. The AE statistical behavior of each individual stage is dependent on the number and size distribution of micro-cracks. The results obtained in the laboratory are useful to understand the various stages of micro-cracking activity during the fracture process in quasi-brittle materials such as concrete & mortar and extend them for field applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-pedogenic carbonates, such as carbonate cement and nodules in the sandstones, are quite common in the terrestrial geological record. Unlike pedogenic carbonates, their stable isotope ratios lack investigations for paleo-climatic reconstructions. The present investigation therefore, explores the possibility of use of stable isotope studies of non-pedogenic carbonates from the Mb-Pleistocene Siwalik Group of sediments exposed in the Ramnagar sub-basin of the NW Himalaya. Petrographic studies reveal the dominance of micrite fabric in carbonate nodules both of pedogenic and non-pedogenic samples irrespective of specific stratigraphic unit However, calcite as cement in the sandstones shows the dominance of micrite fabric in the younger in age sediments. Seventy-two non-pedogenic carbonate samples from the carbonate nodules and cement in the Siwalik sandstones, ranging in age between similar to 1 Ma and 12.2 Ma, were analyzed for delta C-13 and delta O-18 values. The delta C-13 values vary from -24.77 parts per thousand to -1.1 parts per thousand and delta O-18 values vary from -15.34 parts per thousand to -7.81 parts per thousand. Pedogenic and non-pedogenic carbonates ranging in age between similar to 1 Ma and 6 Ma have largely similar delta C-13 values and the range of delta C-13 values indicate the dominance of C-4 type of vegetation. However, unlike pedogenic carbonates which showed the dominance of C-3 type of vegetation pre- 7 Ma on the basis of delta C-13 -depleted isotopic values (Singh et al., 2011), delta C-13 values are largely enriched in the corresponding aged non-pedogenic carbonates revealing no information on specific type of vegetation. Likewise, paleoprecipitational reconstructions from delta O-18 values in pedogenic carbonates showed a progressive increase in aridity from similar to 12 Ma to recent excluding short term increases in rainfall/monsoon intensity at around 10 Ma, 5 Ma, and 1.8 Ma (Singh et al., 2012). On the contrary, such reconstructions are not possible from the delta O-18 values of non-pedogenic carbonates and indeed the delta O-18 values of non-pedogenic carbonates are largely depleted to as much as 6 parts per thousand from the corresponding pedogenic carbonates. Such differences in delta C-13 and delta O-18 values of non-pedogenic carbonates from pedogenic carbonates are primarily due to the dependence of the former on groundwater conditions responsible for precipitating carbonate. Further, a comparison of isotopic values between non-pedogenic and pedogenic carbonates can be interpreted that post-6 Ma and pre-6 Ma non-pedogenic carbonates were largely formed by shallow and deep groundwater conditions respectively. The result of these investigative studies therefore, suggests that the stable delta C-13 and delta O-18 values of non-pedogenic carbonates, unlike the pedogenic carbonates and irrespective of nature of calcite fabric, showed their little importance in paleoclimatic and paleoecological reconstructions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of spectral analyses of surface waves (SASW) tests were conducted on a cement concrete pavement by dropping steel balls of four different values of diameter (D) varying between 25.4 and 76.2 mm. These tests were performed (1) by using different combinations of source to nearest receiver distance (S) and receiver spacing (X), and (2) for two different heights (H) of fall, namely, 0.25 and 0.50 m. The values of the maximum wavelength (lambda(max)) and minimum wavelength (lambda(min)) associated with the combined dispersion curve, corresponding to a particular combination of D and H, were noted to increase almost linearly with an increase in the magnitude of the input source energy (E). A continuous increase in strength and duration of the signals was noted to occur with an increase in the magnitude of D. Based on statistical analysis, two regression equations have been proposed to determine lambda(max) and lambda(min) for different values of source energy. It is concluded that the SASW technique is capable of producing nearly a unique dispersion curve irrespective of (1) diameters and heights of fall of the dropping masses used for producing the vibration, and (2) the spacing between different receivers. The results presented in this paper can be used to provide guidelines for deciding about the input source energy based on the required exploration zone of the pavement. (C) 2014 American Society of Civil Engineers.