953 resultados para Cellulose ester
Resumo:
In this work, cellulose-based electro and ionic conductive composites were developed for application in cellulose based printed electronics. Electroconductive inks were successfully formulated for screen-printing using carbon fibers (CFs) and multi-walled carbon nanotubes (MWCNTs) as conductive functional material and cellulose derivatives working as binder. The formulated inks were used to fabricate conductive flexible and disposable electrodes on paper-based substrates. Interesting results were obtained after 10 printing passes and drying at RT of the ink with 10 % wt. of pristine CFs and 3% wt. of carboxymethyl cellulose (CMC), exhibiting a resistivity of 1.03 Ωcm and a resolution of 400 μm. Also, a resistivity of 0.57 Ωcm was obtained for only one printing pass using an ink based on 0.5 % wt. MWCNTs and 3 % wt. CMC. It was also demonstrated that ionic conductive cellulose matrix hydrogel can be used in electrolyte-gated transistors (EGTs). The electrolytes revealed a double layer capacitance of 12.10 μFcm-2 and ionic conductivity of 3.56x10-7 Scm-1. EGTs with a planar configuration, using sputtered GIZO as semiconducting layer, reached an ON/OFF ratio of 3.47x105, a VON of 0.2 V and a charge carrier mobility of 2.32 cm2V-1s-1.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.
Resumo:
Vascular grafts are used to bypass damaged or diseased blood vessels. Bacterial cellulose (BC) has been studied for use as an off-the-shelf graft. Herein, we present a novel, cost-effective, method for the production of small caliber BC grafts with minimal processing or requirements. The morphology of the graft wall produced a tensile strength above that of native vessels, performing similarly to the current commercial alternatives. As a result of the production method, the luminal surface of the graft presents similar topography to that of native vessels. We have also studied the in vivo behavior of these BC graft in order to further demonstrate their viability. In these preliminary studies, 1 month patency was achieved, with the presence of neo-vessels and endothelial cells on the luminal surface of the graft.
Resumo:
This paper presents the results of experimental investigation on the aqueous dispersion behaviour of micro crystalline cellulose (MCC) prepared using Pluronic F-127. For this purpose, different concentrations (0.5-3.0 wt.%) of MCC were dispersed in water with the help of ultrasonication technique using various concentrations of Pluronic F-127. The homogeneity of the suspensions and agglomerations were characterized by optical and transmission electron microscopy and the concentration of well dispersed MCC was measured using UV-Vis spectroscopy. Also, the suspensions were subjected to high speed ultracentrifugation at 3000 rpm and observed visually for sedimentation and subsequently, concentration was calculated using UV-Vis, in order to assess the long term stability of the suspensions. Based on these experiments, optimum concentration of Pluronic to disperse different MCC concentrations has been suggested.
Resumo:
This work evaluated the effect of acetylated bacterial cellulose (ABC) substrates coated with urinary bladder matrix (UBM) on the behavior of Retinal Pigment Epithelium (RPE), as assessed by cell adhesion, proliferation and development of cell polarity exhibiting transepithelial resistance and polygonal shaped-cells with microvilli. Acetylation of bacterial cellulose (BC) generated a moderate hydrophobic surface (around 65°) while the adsorption of UBM onto these acetylated substrates did not affect significantly the surface hydrophobicity. The ABS substrates coated with UBM enabled the development of a cell phenotype closer to that of native RPE cells. These cells were able to express proteins essential for their cytoskeletal organization and metabolic function (ZO-1 and RPE65), while showing a polygonal shaped morphology with microvilli and a monolayer configuration. The coated ABC substrates were also characterized, exhibiting low swelling effect (between 1.52.0 swelling/mm3), high mechanical strength (2048 MPa) and non-pyrogenicity (2.12 EU/L). Therefore, the ABC substrates coated with UBM exhibit interesting features as potential cell carriers in RPE transplantation that ought to be further explored.
Resumo:
The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300â °C. In vitrotests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells.
Resumo:
[Excerpt] Academic spin-offs, technological ventures born inside Universities, have increasingly strengthen the connections between the scholarship and the economy, by fostering the role of technology transfer and knowledge commercialization. This presentation will outline the major steps in taking an idea or a technology to market, growing the venture and aiming at securing a successful exit. Also, it will present BCTechnologies (Bacterial Cellulose Technologies), a spin-off from the University of Minho (Portugal). (...)
Resumo:
Cutinase from Thermobifida fusca was used to esterify the hydroxyl groups of cellulose with the fatty acids from triolein. Cutinase and triolein were pre-adsorbed on cotton and the reaction proceeded in a dry state during 48 hours at 35ºC. The cutinase-catalyzed esterification of the surface of cotton fabric resulted in the linkage of the oleate groups to the glycoside units of cotton cellulose. The superficial modification was confirmed by performing ATR-FTIR on treated cotton samples and by MALDI-TOF analysis of the liquors from the treatment of the esterified cotton with a crude cellulase mixture. Modified cotton fabric also showed a significant increase of hydrophobicity. This work proposes a novel bio-based approach to obtain hydrophobic cotton. This article is protected by copyright. All rights reserved.
Resumo:
The unique properties of bacterial nanocellulose (BNC) provide the basis for a wide range of applications in human and veterinary medicine, odontology, pharmaceuticals, acoustic and filter membranes, biotechnological devices, and in the food and paper industry. In this chapter, an overview of surface modifications of bacterial cellulose is presented. Depending on the envisaged applications, chemical modifications, incorporation of bioactive molecules, modification of the porosity, crystallinity, and biodegradability may be obtained, further enlarging the potential of BNC.
Resumo:
Bacterial cellulose (BC) films from two distinct sources (obtained by static culture with Gluconacetobacter xylinus ATCC 53582 (BC1) and from a commercial source (BC2)) were modified by bovine lactoferrin (bLF) adsorption. The functionalized films (BC+bLF) were assessed as edible antimicrobial packaging, for use in direct contact with highly perishable foods, specifically fresh sausage as a model of meat products. BC+bLF films and sausage casings were characterized regarding their water vapour permeability (WVP), mechanical properties, and bactericidal efficiency against two food pathogens, Escherichia coli and Staphylococcus aureus. Considering their edibility, an in vitro gastrointestinal tract model was used to study the changes occurring in the BC films during passage through the gastrointestinal tract. Moreover, the cytotoxicity of the BC films against 3T3 mouse embryo fibroblasts was evaluated. BC1 and BC2 showed equivalent density, WVP and maximum tensile strength. The percentage of bactericidal efficiency of BC1 and BC2 with adsorbed bLF (BC1+bLF and BC2+bLF, respectively) in the standalone films and in inoculated fresh sausages, was similar against E. coli (mean reduction 69 % in the films per se versus 94 % in the sausages) and S. aureus (mean reduction 97 % in the films per se versus 36 % in the case sausages). Moreover, the BC1+bLF and BC2+bLF films significantly hindered the specific growth rate of both bacteria. Finally, no relevant cytotoxicity against 3T3 fibroblasts was found for the films before and after the simulated digestion. BC films with adsorbed bLF may constitute an approach in the development of bio-based edible antimicrobial packaging systems.
kinetic analysis of ester hydrolysis reactions considering volume and enthalpy changes due to mixing
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Reactive Chromatography, Fixed-Bed Reactor, Heterogeneous, Hydrolysis, Ester, Catalyst, Adsorption, Ion-Exchange Resin
Resumo:
Sand culture experiments, using a sub-irrigation technique, were installed in order to find out the effects of the macronutrients N, P, K, Ca, Mg and S on growth, aspect, mineral composition, length of fibers, thickness of cell wall and cellulose concentration in slash pine. The aim was to obtain, under controlled conditions, basic information which could eventually lead to practical means designed to increase the rate of growth and to make of slash pine a richer source of cellulose. Nitrogen, Phosphorus, Potassium Experiment A 3 x 3 x 3 factorial design with two replicates was used. Nitrogen was supplied initially at the levels of 25, 50 and 100 ppm; phosphorus was given at the rates of 5, 10 and 20 ppm; potassium was supplied at the rates of 25, 50 and 100 ppm; six months after the experiment was started the first level for each element was dropped to zero. Others macro and all micronutrients were supplied at uniform rates. Fifteen hours of illumination per day were provided. The experimental technique for growing the slash pine seedlings proved quite satisfactory. Symptoms of deficiency of nitrogen, phosphorus and potassium were observed, described and recorded in photographs and water colors. These informations will help to identify abnormalities which may appear under field conditions. Chemical analysis of the several plant parts, on the other hand, give a valuable means to assess the nutritional status of slash pine, thus confirming when needed, the visual diagnosis. The correctness of manurial pratices, on the other hand, can be judged with the help of the analytical data tabulated. Under the experimental conditions nitrogen caused the highest increases on growth, as measured by increments in height and dry weights, whereas the effects of phosphorus and potassium were less marked. Cellulose concentration was not significantly affected by the treatments used. Higher levels of N seemed to decrease both length of fiber elements and the thickness of cell wall. The effects of P and K were not well defined. Calcium, Magnesium, Sulfur Experiment A 3 x 3 x 3 factorial design with two replicates was used. Calcium was supplied initially at the levels of 12.5, 25 and 50 ppm; magnesium and sulfur were given at the rates of 6, 12.5 and 25 ppm. Other macro and micronutrients were supplied at uniform rates, common to all treatments. Three months after starting the experiment the first level for each element was dropped to zero. Symptoms of deficiency of calcium, magnesium and sulfur were observed, described and recorded as in the case of the previous experiment. Chemical analysis were made, both for mineral content and cellulose concentration. Length of fibers and thickness of cell wall were measured. Both calcium and magnesium increase height, sulfur failing to give significant response. Dry weight was beneficially affected by calcium and sulfur. The levels of calcium, magnesium and sulfur in the needles associated with deficiency and maximum growth are comparable with those found in the literature. Cellulose concentration increased when the level of sulfur in the substrate was raised. The thickness of cell wall was negatively affected by the treatments; no effect was observed with regards to length of fibers.
Resumo:
A method to purify trypanosomastigotes of some strains of Trypanosoma cruzi (Y, CL, FL, F, "Berenice", "Colombiana" and "São Felipe") from mouse blood by using DEAE-cellulose columns was standardized. This procedure is a modification of the Lanham & Godfrey methods and differs in some aspects from others described to purify T. cruzi bloodstream trypomastigotes, mainly by avoidance of prior purifications of parasites. By this method, the broad trypomastigotes were mainly isolated, accounting for higher recoveries obtained with strains having higher percentages of these forms: processing of infected blood from irradiated mice could be advantageous by increasing the recovery of parasites (percentage and/or total number) and elution of more slender trypomastigotes. Trypomastigotes purified by this method presented normal morphology and motility, remained infective to triatomine bugs and mice, showing in the latter prepatent periods and courses parasitemia similar to those of control parasites, and also reproducing the polymorphism pattern of each strain. Their virulence and pathogenicity also remained considerably preserved, the latter property being evaluated by LD 50 tests, mortality rates and mean survival time of inoculated mice. Moreover, these parasites presented positive, clear and peripheral immunofluorescence reaction at titres similar to those of control organisms, thus suggesting important preservation of their surface antigens.
Resumo:
Passage of malaria infected blood through a two-layered column composed of acid-washed glass beads and CF 11 cellulose removes white cells from parasitized blood. However, because use of glass beads and CF 11 cellulose requires filtration of infected blood separately through these two resins and the addition of ADP, the procedure is time-consuming and may be inapropriate for use in the field, especially when large numbers of blood samples are to be treated. Our modification of this process yields parasitized cells free of contaminating leukocytes, and because of its operational simplicity, large numbers of blood samples can be processed. Our procedure also compares well with those using expensive commercial Sepacell resins in its ability to separate leukocytes from whole blood. As a test of usefulness in molecular biologic investigations, the parasites obtained from the blood of malaria-infected patients using the modified procedure yield genomic DNA whose single copy gene, the circumsporozite gene, efficiently amplifies by polymerase chain reaction.