955 resultados para Cellular prion protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is considerable concern that bovine prions from cattle with bovine spongiform encephalopathy (BSE) may have been passed to humans (Hu), resulting in a new form of Creutzfeldt–Jakob disease (CJD). We report here the transmission of bovine (Bo) prions to transgenic (Tg) mice expressing BoPrP; one Tg line exhibited incubation times of ≈200 days. Like most cattle with BSE, vacuolation and astrocytic gliosis were confined in the brainstems of these Tg mice. Unexpectedly, mice expressing a chimeric Bo/Mo PrP transgene were resistant to BSE prions whereas mice expressing Hu or Hu/Mo PrP transgenes were susceptible to Hu prions. A comparison of differences in Mo, Bo, and Hu residues within the C terminus of PrP defines an epitope that modulates conversion of PrPC into PrPSc and, as such, controls prion transmission across species. Development of susceptible Tg(BoPrP) mice provides a means of measuring bovine prions that may prove critical in minimizing future human exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A definite diagnosis of prion diseases such as Creutzfeldt–Jakob disease (CJD) relies on the detection of pathological prion protein (PrPSc). However, no test for PrPSc in cerebrospinal fluid (CSF) has been available thus far. Based on a setup for confocal dual-color fluorescence correlation spectroscopy, a technique suitable for single molecule detection, we developed a highly sensitive detection method for PrPSc. Pathological prion protein aggregates were labeled by specific antibody probes tagged with fluorescent dyes, resulting in intensely fluorescent targets, which were measured by dual-color fluorescence intensity distribution analysis in a confocal scanning setup. In a diagnostic model system, PrPSc aggregates were detected down to a concentration of 2 pM PrPSc, corresponding to an aggregate concentration of approximately 2 fM, which was more than one order of magnitude more sensitive than Western blot analysis. A PrPSc-specific signal could also be detected in a number of CSF samples from patients with CJD but not in control samples, providing the basis for a rapid and specific test for CJD and other prion diseases. Furthermore, this method could be adapted to the sensitive detection of other disease-associated amyloid aggregates such as in Alzheimer's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have generated lines of transgenic mice that express a mutant prion protein (PrP) containing 14 octapeptide repeats whose human homologue is associated with an inherited prion dementia. These mice develop a neurological illness with prominent ataxia at 65 or 240 days of age, depending on whether the transgene array is, respectively, homozygous or hemizygous. Starting from birth, mutant PrP is converted into a protease-resistant and detergent-insoluble form that resembles the scrapie isoform of PrP, and this form accumulates dramatically in many brain regions throughout the lifetime of the mice. As PrP accumulates, there is massive apoptosis of granule cells in the cerebellum. Our analysis provides important insights into the molecular pathogenesis of inherited prion disorders in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence is growing to support a functional role for the prion protein (PrP) in copper metabolism. Copper ions appear to bind to the protein in a highly conserved octapeptide repeat region (sequence PHGGGWGQ) near the N terminus. To delineate the site and mode of binding of Cu(II) to the PrP, the copper-binding properties of peptides of varying lengths corresponding to 2-, 3-, and 4-octarepeat sequences have been probed by using various spectroscopic techniques. A two-octarepeat peptide binds a single Cu(II) ion with Kd ≈ 6 μM whereas a four-octarepeat peptide cooperatively binds four Cu(II) ions. Circular dichroism spectra indicate a distinctive structuring of the octarepeat region on Cu(II) binding. Visible absorption, visible circular dichroism, and electron spin resonance spectra suggest that the coordination sphere of the copper is identical for 2, 3, or 4 octarepeats, consisting of a square-planar geometry with three nitrogen ligands and one oxygen ligand. Consistent with the pH dependence of Cu(II) binding, proton NMR spectroscopy indicates that the histidine residues in each octarepeat are coordinated to the Cu(II) ion. Our working model for the structure of the complex shows the histidine residues in successive octarepeats bridged between two copper ions, with both the Nɛ2 and Nδ1 imidazole nitrogen of each histidine residue coordinated and the remaining coordination sites occupied by a backbone amide nitrogen and a water molecule. This arrangement accounts for the cooperative nature of complex formation and for the apparent evolutionary requirement for four octarepeats in the PrP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NMR structures of the recombinant 217-residue polypeptide chain of the mature bovine prion protein, bPrP(23–230), and a C-terminal fragment, bPrP(121–230), include a globular domain extending from residue 125 to residue 227, a short flexible chain end of residues 228–230, and an N-terminal flexibly disordered “tail” comprising 108 residues for the intact protein and 4 residues for bPrP(121–230), respectively. The globular domain contains three α-helices comprising the residues 144–154, 173–194, and 200–226, and a short antiparallel β-sheet comprising the residues 128–131 and 161–164. The best-defined parts of the globular domain are the central portions of the helices 2 and 3, which are linked by the only disulfide bond in bPrP. Significantly increased disorder and mobility is observed for helix 1, the loop 166–172 leading from the β-strand 2 to helix 2, the end of helix 2 and the following loop, and the last turn of helix 3. Although there are characteristic local differences relative to the conformations of the murine and Syrian hamster prion proteins, the bPrP structure is essentially identical to that of the human prion protein. On the other hand, there are differences between bovine and human PrP in the surface distribution of electrostatic charges, which then appears to be the principal structural feature of the “healthy” PrP form that might affect the stringency of the species barrier for transmission of prion diseases between humans and cattle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prion diseases are characterized by the presence of the abnormal prion protein PrPSc, which is believed to be generated by the conversion of the α-helical structure that predominates in the normal PrP isoform into a β-sheet structure resistant to proteinase K (PK). In human prion diseases, two major types of PrPSc, type 1 and 2, can be distinguished based on the difference in electrophoretic migration of the PK-resistant core fragment. In this study, protein sequencing was used to identify the PK cleavage sites of PrPSc in 36 cases of prion diseases. We demonstrated two primary cleavage sites at residue 82 and residue 97 for type 1 and type 2 PrPSc, respectively, and numerous secondary cleavages distributed along the region spanning residues 74–102. Accordingly, we identify three regions in PrPSc: one N-terminal (residues 23–73) that is invariably PK-sensitive, one C-terminal (residues 103–231) that is invariably PK-resistant, and a third variable region (residues 74–102) where the site of the PK cleavage, likely reflecting the extent of the β-sheet structure, varies mostly as a function of the PrP genotype at codon 129.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yeast nonchromosomal gene [URE3] is due to a prion form of the nitrogen regulatory protein Ure2p. It is a negative regulator of nitrogen catabolism and acts by inhibiting the transcription factor Gln3p. Ure2p residues 1–80 are necessary for prion generation and propagation. The C-terminal fragment retains nitrogen regulatory activity, albeit somewhat less efficiently than the full-length protein, and it also lowers the frequency of prion generation. The crystal structure of this C-terminal fragment, Ure2p(97–354), at 2.3 Å resolution is described here. It adopts the same fold as the glutathione S-transferase superfamily, consistent with their sequence similarity. However, Ure2p(97–354) lacks a properly positioned catalytic residue that is required for S-transferase activity. Residues within this regulatory fragment that have been indicated by mutational studies to influence prion generation have been mapped onto the three-dimensional structure, and possible implications for prion activity are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human prion gene contains five copies of a 24 nt repeat that is highly conserved among species. An analysis of folding free energies of the human prion mRNA, in particular in the repeat region, suggested biased codon selection and the presence of RNA patterns. In particular, pseudoknots, similar to the one predicted by Wills in the human prion mRNA, were identified in the repeat region of all available prion mRNAs available in GenBank, but not those of birds and the red slider turtle. An alignment of these mRNAs, which share low sequence homology, shows several co-variations that maintain the pseudoknot pattern. The presence of pseudoknots in yeast Sup35p and Rnq1 suggests acquisition in the prokaryotic era. Computer generated three-dimensional structures of the human prion pseudoknot highlight protein and RNA interaction domains, which suggest a possible effect in prion protein translation. The role of pseudoknots in prion diseases is discussed as individuals with extra copies of the 24 nt repeat develop the familial form of Creutzfeldt–Jakob disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prion replication in spleen and neuroinvasion after i.p. inoculation of mice is impaired in forms of immunodeficiency where mature B lymphocytes are lacking. In spleens of wild-type mice, infectivity is associated with B and T lymphocytes and stroma but not with circulating lymphocytes. We generated transgenic prion protein knockout mice overexpressing prion protein in B lymphocytes and found that they failed to accumulate prions in spleen after i.p. inoculation. We conclude that splenic B lymphocytes are not prion-replication competent and that they acquire prions from other cells, most likely follicular dendritic cells with which they closely associate and whose maturation depends on them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transmissible spongiform encephalopathies, or prion diseases, are fatal degenerative disorders of the central nervous system that affect humans and animals. Prions are nonconventional infectious agents whose replication depends on the host prion protein (PrP). Transmission of prions to cultured cells has proved to be a particularly difficult task, and with a few exceptions, their experimental propagation relies on inoculation to laboratory animals. Here, we report on the development of a permanent cell line supporting propagation of natural sheep scrapie. This model was obtained by stable expression of a tetracycline-regulatable ovine PrP gene in a rabbit epithelial cell line. After exposure to scrapie agent, cultures were repeatedly found to accumulate high levels of abnormal PrP (PrPres). Cell extracts induced a scrapie-like disease in transgenic mice overexpressing ovine PrP. These cultures remained healthy and stably infected upon subpassaging. Such data show that (i) cultivated cells from a nonneuronal origin can efficiently replicate prions; and (ii) species barrier can be crossed ex vivo through the expression of a relevant PrP gene. This approach led to the ex vivo propagation of a natural transmissible spongiform encephalopathy agent (i.e., without previous experimental adaptation to rodents) and might be applied to human or bovine prions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prion protein displays a unique structural ambiguity in that it can adopt multiple stable conformations under physiological conditions. In our view, this puzzling feature resulted from a sudden environmental change in evolution when the prion, previously an integral membrane protein, got expelled into the extracellular space. Analysis of known vertebrate prions unveils a primordial transmembrane protein encrypted in their sequence, underlying this relocalization hypothesis. Apparently, the time elapsed since this event was insufficient to create a “minimally frustrated” sequence in the new milieu, probably due to the functional constraints set by the importance of the very flexibility that was created in the relocalization. This scenario may explain why, in a structural sense, the prion protein is still en route toward becoming a foldable globular protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-catalyzed oxidation may result in structural damage to proteins and has been implicated in aging and disease, including neurological disorders such as Alzheimer's disease and amyotrophic lateral sclerosis. The selective modification of specific amino acid residues with high metal ion affinity leads to subtle structural changes that are not easy to detect but may have dramatic consequences on physical and functional properties of the oxidized protein molecules. PrP contains a histidine-rich octarepeat domain that binds copper. Because copper-binding histidine residues are particularly prone to metal-catalyzed oxidation, we investigated the effect of this reaction on the recombinant prion protein SHaPrP(29–231). Using Cu2+/ascorbate, we oxidized SHaPrP(29–231) in vitro. Oxidation was demonstrated by liquid chromatography/mass spectrometry, which showed the appearance of protein species of higher mass, including increases in multiples of 16, characteristic of oxygen incorporation. Digestion studies using Lys C indicate that the 29–101 region, which includes the histidine-containing octarepeats, is particularly affected by oxidation. Oxidation was time- and copper concentration-dependent and was evident with copper concentrations as low as 1 μM. Concomitant with oxidation, SHaPrP(29–231) suffered aggregation and precipitation, which was nearly complete after 15 min, when the prion protein was incubated at 37°C with a 6-fold molar excess of Cu2+. These findings indicate that PrP, a copper-binding protein, may be particularly susceptible to metal-catalyzed oxidation and that oxidation triggers an extensive structural transition leading to aggregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although a functional role in copper binding has been suggested for the prion protein, evidence for binding at affinities characteristic of authentic metal-binding proteins has been lacking. By presentation of copper(II) ions in the presence of the weak chelator glycine, we have now characterized two high-affinity binding sites for divalent transition metals within the human prion protein. One is in the N-terminal octapeptide-repeat segment and has a Kd for copper(II) of 10−14 M, with other metals (Ni2+, Zn2+, and Mn2+) binding three or more orders of magnitude more weakly. However, NMR and fluorescence data reveal a previously unreported second site around histidines 96 and 111, a region of the molecule known to be crucial for prion propagation. The Kd for copper(II) at this site is 4 × 10−14 M, whereas nickel(II), zinc(II), and manganese(II) bind 6, 7, and 10 orders of magnitude more weakly, respectively, regardless of whether the protein is in its oxidized α-helical (α-PrP) or reduced β-sheet (β-PrP) conformation. A role for prion protein (PrP) in copper metabolism or transport seems likely and disturbance of this function may be involved in prion-related neurotoxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prion diseases are a group of fatal neurodegenerative disorders that are unique in being infectious, genetic, and sporadic in origin. Infectious cases are caused by prions, which are composed primarily of PrPSc, a posttranslationally modified isoform of the normal cellular prion protein PrPC. Inherited cases are linked to insertional or point mutations in the host gene encoding PrPC. To investigate the molecular mechanisms underlying inherited prion diseases, we have constructed stably transfected Chinese hamster ovary cells that express mouse PrPs homologous to two human PrPs associated with familial Creutzfeldt-Jakob disease. One mouse PrP molecule carries a Glu-->Lys substitution at codon 199, and the other carries an insertion of six additional octapeptide repeats between codons 51 and 90. We find that both of these mutant PrPs display several biochemical hallmarks of PrPSc when synthesized in cell culture. Unlike wild-type PrP, the mutant proteins are detergent insoluble and are relatively resistant to digestion by proteinase K, yielding an N-terminally truncated core fragment of 27-30 kDa. Pulse-chase labeling experiments demonstrate that these properties are acquired posttranslationally, and are accompanied by increased metabolic stability of the protein. Our results provide the first evidence that a molecule with properties reminiscent of PrPSc can be generated de novo in cultured cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recorded in the CA1 region from hippocampal slices of prion protein (PrP) gene knockout mice to investigate whether the loss of the normal form of prion protein (PrPC) affects neuronal excitability as well as synaptic transmission in the central nervous system. No deficit in synaptic inhibition was found using field potential recordings because (i) responses induced by stimulation in stratum radiatum consisted of a single population spike in PrP gene knockout mice similar to that recorded from control mice and (ii) the plot of field excitatory postsynaptic potential slope versus the population spike amplitude showed no difference between the two groups of mice. Intracellular recordings also failed to detect any difference in cell excitability and the reversal potential for inhibitory postsynaptic potentials. Analysis of the kinetics of inhibitory postsynaptic current revealed no modification. Finally, we examined whether synaptic plasticity was altered and found no difference in long-term potentiation between control and PrP gene knockout mice. On the basis of our findings, we propose that the loss of the normal form of prion protein does not alter the physiology of the CA1 region of the hippocampus.