942 resultados para Cell membranes.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liposomes composed of cationic lipids have become very popular gene delivery vehicles. A great deal of research is being pursued to make efficient vectors by varying their molecular architecture. Cholesterol being ubiquitous component in most of the animal cell membranes is increasingly being used as a hydrophobic segment of synthetic cationic lipids. In this review we describe various cholesterol based cationic lipids and focus on the effect of modifying various structural segments like linker and the head group of the cationic lipids on gene transfection efficiency with a special emphasis on the importance of ether linkage between cholesteryl backbone and the polar head group. Interaction of cationic cholesteryl lipids with dipalmitylphosphatidycholine membranes is also discussed here. Apart from cholesterol being an attractive scaffold in the drug/gene delivery vehicles, certain cholesteryl derivatives have also been shown to be attractive room temperature liquid-crystalline materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pore forming toxins are being classified in the protein community based on their ability of forming pores in living cell membranes. Some initial study has apparently pointed out the crystallographic pathway rather can be viewed as a structural as well as morphological changes of proteins in terms of self assembly before and during the pore formation process in surfactant medium. Being a water soluble compound, it changes its conformation and originates some pre-pore complex, which later partially goes inside the cell membrane causing a pore. The physical mechanism for this whole process is still unknown. In this study we have tried to understand these types of biological processes from physical point of view by using supported lipid bilayer as a model system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sphingolipids are essential components of cell membranes, and many of them regulate vital cell functions. In particular, ceramide plays crucial roles in cell signaling processes. Two major actions of ceramides are the promotion of cell cycle arrest and the induction of apoptosis. Phosphorylation of ceramide produces ceramide 1-phosphate (C1P), which has opposite effects to ceramide. C1P is mitogenic and has prosurvival properties. In addition, C1P is an important mediator of inflammatory responses, an action that takes place through stimulation of cytosolic phospholipase A2, and the subsequent release of arachidonic acid and prostaglandin formation. All of the former actions are thought to be mediated by intracellularly generated C1P. However, the recent observation that C1P stimulates macrophage chemotaxis implicates specific plasma membrane receptors that are coupled to Gi proteins. Hence, it can be concluded that C1P has dual actions in cells, as it can act as an intracellular second messenger to promote cell survival, or as an extracellular receptor agonist to stimulate cell migration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipid bilayer membranes are models for cell membranes--the structure that helps regulate cell function. Cell membranes are heterogeneous, and the coupling between composition and shape gives rise to complex behaviors that are important to regulation. This thesis seeks to systematically build and analyze complete models to understand the behavior of multi-component membranes.

We propose a model and use it to derive the equilibrium and stability conditions for a general class of closed multi-component biological membranes. Our analysis shows that the critical modes of these membranes have high frequencies, unlike single-component vesicles, and their stability depends on system size, unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We compare these results with experimental observations.

We also study open membranes to gain insight into long tubular membranes that arise for example in nerve cells. We derive a complete system of equations for open membranes by using the principle of virtual work. Our linear stability analysis predicts that the tubular membranes tend to have coiling shapes if the tension is small, cylindrical shapes if the tension is moderate, and beading shapes if the tension is large. This is consistent with experimental observations reported in the literature in nerve fibers. Further, we provide numerical solutions to the fully nonlinear equilibrium equations in some problems, and show that the observed mode shapes are consistent with those suggested by linear stability. Our work also proves that beadings of nerve fibers can appear purely as a mechanical response of the membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The compound eye of Drosophila melanogaster begins to differentiate during the late third larval instar in the eye-antennal imaginal disc. A wave of morphogenesis crosses the disc from posterior to anterior, leaving behind precisely patterned clusters of photoreceptor cells and accessory cells that will constitute the adult ommatidia of the retina. By the analysis of genetically mosaic eyes, it appears that any cell in the eye disc can adopt the characteristics of any one of the different cell types found in the mature eye, including photoreceptor cells and non-neuronal accessory cells such as cone cells. Therefore, cells within the prospective retinal epithelium assume different fates presumably via information present in the environment. The sevenless^+ (sev^+) gene appears to play a role in the expression of one of the possible fates, since the mutant phenotype is the lack of one of the pattern elements, namely, photoreceptor cell R7. The sev^+ gene product had been shown to be required during development of the eye, and had also been shown in genetic mosaics to be autonomous to presumptive R7. As a means of better understanding the pathway instructing the differentiation R7, the gene and its protein product were characterized.

The sev+ gene was cloned by P-element transposon tagging, and was found to encode an 8.2 kb transcript expressed in developing eye discs and adult heads. By raising monoclonal antibodies (MAbs) against a sev^+- β-galactosidase fusion protein, the expression of the protein in the eye disc was localized by immuno-electronmicroscopy. The protein localizes to the apical cell membranes and microvilli of cells in the eye disc epithelium. It appears during development at a time coincident with the initial formation of clusters, and in all the developing photoreceptors and accessory cone cells at a time prior to the overt differentiation of R7. This result is consistent with the pluripotency of cells in the eye disc. Its localization in the membranes suggests that it may receive information directing the development of R7. Its localization in the apical membranes and microvilli is away from the bulk of the cell contacts, which have been cited as a likely regions for information presentation and processing. Biochemical characterization of the sev^+ protein will be necessary to describe further its role in development.

Other mutations in Drosophila have eye phenotypes. These were analyzed to find which ones affected the initial patterning of cells in the eye disc, in order to identify other genes, like sev, whose gene products may be involved in generating the pattern. The adult eye phenotypes ranged from severe reduction of the eye, to variable numbers of photoreceptor cells per ommatidium, to sub de defects in the organization of the supporting cells. Developing eye discs from the different strains were screened using a panel of MAbs, which highlight various developmental stages. Two identified matrix elements in and anterior to the furrow, while others identified the developing ommatidia themselves, like the anti-sev MAb. Mutation phenotypes were shown to appear at many stages of development. Some mutations seem to affect the precursor cells, others, the setting up of the pattern, and still others, the maintenance of the pattern. Thus, additional genes have now been identified that may function to support the development of a complex pattern.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spreading depression (SD) is a phenomenon observed in several sections of vertebrate central nervous system. It can occur spontaneously or be evoked by a variety of stimuli, and consists of a wave of depression of the normal electrical activity of the nervous tissue which spreads slowly in all directions in the tissue. This wave of depression is accompanied by several concomitants including ion movements. All the concomitants of SD can be explained by an increase in the sodium permeability of the plasma membranes of cellular elements involved in this phenomenon.

In the chicken retina, SD is accompanied by a transparency change which can be detected with the naked eye. The isolated retina is a thin (0.1 mm) membrane in which the extracellular fluid quickly and completely equilibrates with the incubation solutions. This preparation was therefore used to study the ion movements during SD by measuring and comparing the ion contents and the extracellular space (ECS) of retinas incubated in various solutions of which some inhibited SD, whereas others allowed this phenomenon to occur.

The present study has shown that during SD there is a shift of extracellular sodium into the intracellular compartment of the retina, a release of intracellular K and a decrease in the magnitude of ECS. These results are in agreement with previous postulates about SD, although the in vitro experimental condition makes the ion movements appear larger and the loss of ECS smaller than observed in the intact cortical tissue. The movements of Na and K, in opposite directions, are reversible. The development and magnitudes of SD is very little affected by deprivation of the oxygen supply.

It was established that the inward sodium shift is not a consequence of an arrest of the Na-pump. It can be prevented, together with SD by the membrane stabilizers, magnesium and procaine. Spreading depression and the ion movements are incompletely inhibited by tetrodotoxin, which blocks the sodium influx into nerve fibers during the action potential. The replacement of Na in the bathing solution by Li does not prevent SD, which is accompanied by Li accumulation in the intracellular compartment. From these experiments and others it was concluded that the mechanism underlying SD and the ion shifts is an increase in the sodium permeability of cell membranes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Power-time curves and metabolic properties of Tetrahymena thermophila BF5 exposed to different Yb3+ stop levels were studied by ampoule method of isothermal calorimetry at 28 degrees C. Metabolic rate (r) decreased significantly while peak time (PT) increased with the increase of Yb3+ stop. These results were mainly due to the inhibition of cell growth, which corresponded to the decrease of cell number obtained by cell counting. Compared with cell counting, calorimetry was sensible, easy to use and convenient for monitoring the toxic effects of Yb3+ stop on cells and freshwater ecosystem. It was also found that cell membrane fluidity decreased significantly under the effects of Yb3+ stop, which indicated that Yb3+ could be membrane active molecules with its effect on cell membranes as fundamental aspect of its toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

细胞生物学研究的一个重要方向是动态地控制细胞在基底上的黏附。最近,随着表面化学的研究深入,尤其是对烷基硫醇在金基底上形成自组装单层膜(self-assembled monolayers, SAMs)这一体系的研究,使得人们能在分子水平的表面上控制细胞黏附。精氨酸-甘氨酸-天冬氨酸(arginine-glycine-aspartate, RGD)序列首先是从细胞外基质蛋白中分离出来的,能够识别并非共价结合细胞膜表面的整合素受体,从而促进细胞黏附。以前的一些工作已经证实,将含有RGD的肽链连接到SAMs表面之后,能够生物特异性地黏附动物细胞。已有的手段比如光照、电压、加热、微电极、微流控以及表面纳米形貌的梯度变化,都不能真正实现可逆地控制细胞黏附,原因是这些方法所用的化学有限;这些方法也不能得到完全抗拒细胞黏附的表面,原因是这些方法产生的表面缺陷等不完整。用两种不同波长的光(紫外光和可见光)照射偶氮苯,偶氮苯会发生可逆的光致异构变化,因此,偶氮苯的光致异构性质可以用来可逆地控制细胞在表面黏附。运用含有偶氮苯的混合SAMs,偶氮苯的末端连接GRGDS肽,混合SAMs中是以末端为六聚乙二醇的硫醇为背景,该SAMs修饰而成的表面能够黏附或者抗拒细胞黏附,其表面黏附性质取决于SAMs中偶氮苯的构象。该方法提供了一种在分子水平的表面上我们所了解到的唯一能可逆控制细胞黏附的方法,该方法需要用到的光源来自于标准荧光显微镜所配置的汞灯。 为了实现在金基底表面可逆的控制细胞黏附,我们合成了如下三个化合物: 由于化合物1的溶解性很差,几乎在所有溶剂里都不溶,所以不能直接用化合物1制备SAMs;化合物2能高效地抗拒细胞的黏附;化合物3的偶氮苯末端是活化酯,能够连接GRGDS肽,从而控制细胞黏附。 将化合物2和化合物3以一定的比例均匀混合在金基底表面形成SAMs,然后将GRGDS肽连接到偶氮苯(反式)的末端(通过GRGDS肽的甘氨酸上的伯胺基与偶氮苯末端的活化酯反应),从而得到细胞黏附的表面。用紫外光照射该细胞黏附表面5-10小时,随着偶氮苯的构象由反式变为顺式,偶氮苯末端的GRGDS肽淹没在化合物2的六聚乙二醇中,得到抗拒细胞黏附的惰性表面。再用可见光照射该惰性表面1个小时,随着偶氮苯的构象由顺式变为反式,原先埋没在六聚乙二醇中的GRGDS肽伸展至单层膜的末端,又得到了细胞黏附的表面。因此,该表面能完全可逆地控制细胞在金表面黏附。 An important area in cell biology is the dynamic control of cell adhesion on substrates. Recent advancements in surface chemistry, in particular, self-assembled monolayers (SAMs) of alkanethiols on gold substrates, have permitted unprecedented control of cell adhesion via molecularly defined surfaces. The tri-peptide sequence arginine-glycine-aspartate (RGD), initially isolated from the extracellular matrix (ECM) proteins, can recognize and non-covalently bind with integrin receptors on cell membranes to promote cell adhesion. Some previous work has demonstrated that RGD peptide grafted on SAMs can allow bio-specific adhesion of mammalian cells that mimic natural adhesion. Existing technologies such as light, voltage, heat, microelectrodes, microfluidic systems and surface gradient of nanotopography, either cannot realize fully reversible control of cell adhesion, due to the limitation in the chemistry used, or cannot yield a surface completely resistant against cell adhesion, due to the imperfection of surfaces. Azobenzenes undergo reversible photo-induced isomerization rapidly at two different wavelengths of light (UV and visible light), it therefore potentially allows the reversible control of cell adhesion on a surface. By using a mixed SAMs presenting azobenzene groups terminated in GRGDS peptides in a background of hexa(ethylene glycol) groups, the surface can either accommodate or resist cell adhesion depending on the conformation of the azobenzene embedded in SAMs. This method provides the only means we know to control cell adhesion reversibly on a molecularly well-defined surface by using light generated by a mercury lamp equipped on standard fluorescence microscopes. To realize the reversible control of cell adhesion on gold surface, we synthesized three kinds of compounds as following, We found that it was difficult to obtain SAMs directly from compound 1 because of its poor solubility in almost all kinds of solvents; compound 2 can resist cell adhesion efficiently; compound 3 presents an azobenzene terminated with NHS-activated ester, which can couple with a GRGDS peptide to control cell adhesion. After coating a gold surface with compound 2 and 3 in appropriate ratios to form a SAM followed by coupling the GRGDS peptides with NHS-activated esters at the end of azobenzene (E configuration) resulted in a cell-adhesive SAM. Irradiating this cell-adhesive SAM with UV light for 5-10 h converted the E configuration of azobenzene into the Z form, the GRGDS peptides becoming masked in the PEG, resulting in a cell-resistant surface. These SAM could again support cell adhesion as a result of the conformational switch of azobenzene from Z to E with the irradiation of visible light for 1 h. This surface, therefore, allows completely reversible control of cell adhesion on a gold surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

alpha-Actinin has been shown to be capable of interacting with some special membrane phospholipids directly, which is important for its function. In this study, hybrid bilayer membranes composed of negatively charged lipids are constructed on the surface plasmon resonance gold substrate and on the gold electrode, respectively, and the interaction between alpha-actinin and negatively charged lipids membrane is investigated by surface plasmon resonance, cyclic voltammetry and electrochemical impedance spectroscopy methods. alpha-Actinin is proved to be able to interact with the negatively charged lipids membrane directly. It can also insert at least partly into the membrane or lead to some defect or lesion in the membrane, which increase the permeability of the membrane. This study would bring some insight on the interaction between the alpha-actinin and the cell membranes in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyunsaturated fatty acids (PUFAs) are important components of infant and adult nutrition because they serve as structural elements of cell membranes. Fatty acid desaturases are responsible for the insertion of double bonds into pre-formed fatty acid chains in reactions that require oxygen and reducing equivalents. In this study, the genome-wide characterization of the fatty acid desaturases from seven eukaryotic photosynthetic microalgae was undertaken according to the conserved histidine-rich motifs and phylogenetic profiles. Analysis of these genomes provided insight into the origin and evolution of the pathway of fatty acid biosynthesis in eukaryotic plants. In addition, the candidate enzyme from Chlamydomonas reinhardtii with the highest similarity to the microsomal Delta 12 desaturase of Chlorella vulgaris was isolated, and its function was verified by heterologous expression in yeast (Saccharomyces cerevisiae).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wydział Biologii: Instytut Biologii Eksperymentalnej

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O selénio (Se) é um micronutriente essencial para o crescimento, desenvolvimento e normal metabolismo dos animais, incluindo o ser humano. É parte integrante de um conjunto de proteínas, as selenoproteínas, com ação antioxidante (protegendo as membranas celulares contra danos dos radicais livres), envolvidas no metabolismo das hormonas da tiróide, na regulação do crescimento e viabilidade celular, nas funções do sistema imune e na reprodução. É introduzido na dieta alimentar (principalmente nas formas de selenometionina e selenocisteína) através das plantas, e de produtos que delas derivam, que assimilam os compostos de selénio presentes no solo. Uma vez que a quantidade de selénio existente nos solos é muito variável, o teor nos alimentos vai depender da sua origem geográfica e, por consequência, a ingestão de selénio varia entre regiões e países. Baixos níveis de selénio estão associados a um declínio na função imune e problemas cognitivos. A deficiência de Se pode também ocasionar problemas musculares e cardiomiopatia. Concentrações reduzidas foram observadas em indíviduos com crises epiléticas e também em casos de pré-eclampsia. A deficiência de selénio pode também desenvolver-se durante a nutrição parenteral. Atualmente, a Dose Diária Recomendada (DDR) é de 55 μg/dia para homens e mulheres adultos e saudáveis. No entanto, existem evidências clínicas de que a ingestão em doses superiores (200-300 μg/dia) pode ter um papel benéfico na prevenção de alguns tipos de cancro e doenças cardiovasculares, na melhoria da resposta imunológica, como neuroprotetor e na fertilidade. O Se desempenha um papel importante na fertilidade masculina, sendo necessário na biossíntese da testosterona e na formação e normal desenvolvimento dos espermatozóides. Em mulheres grávidas o Se, ajuda a prevenir complicações antes e durante o parto e promove o normal desenvolvimento do feto. Como antioxidante o selénio vai combater os danos provocados pelos radicais livres, impedindo que estes exerçam o seu papel prejudicial no organismo. Sendo o sistema imunológico muito suscetível aos danos provocados pelo stress oxidativo, o Se vai exercer efeitos benéficos combatendo os danos por ele causados. Relativamente à capacidade viral, não é possível saber com exatidão qual a quantidade de Se necessária ou concentração ideal no plasma para evitar a ocorrência e desenvolvimento de infeções virais. No entanto, sabe-se que tem um efeito benéfico em pacientes HIV positivos e em indivíduos infetados com o vírus da hepatite (B ou C) contra a progressão para o neoplasia de fígado. Em teoria, a nível cardiovascular, este elemento pode exercer um efeito protetor, embora alguns estudos epidemiológicos não tenham mostrado uma associação clara entre o risco cardiovascular e os níveis selénio. A nível cerebral o Se vai atuar como neuroprotetor, prevenindo o aparecimento de patologias como demência e doença de Alzheimer. Apesar destes indicadores, a maioria dos países europeus, incluindo Portugal, regista uma deficiente ingestão de selénio por parte da população. A suplementação poderá constituir uma opção para garantir os níveis nutricionais recomendados e/ou ser utilizada com o objetivo de prevenir algumas doenças e o envelhecimento. No entanto o selénio pode também ser tóxico se ingerido em excesso, estando a dose máxima admissível fixada em 400 μg/dia. A intoxicação por selénio é chamada selenose e os sintomas comuns incluem: hálito a alho, distúrbios gastrointestinais, perda de cabelo, descamação das unhas, danos neurológicos e fadiga. Assim, atualmente acredita-se que enquanto indivíduos com baixo nível de Se podem obter benefícios da suplementação, esta pode ser prejudicial aqueles com valores normais ou elevados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase (beta ARK) phosphorylates its membrane-associated receptor substrates, such as the beta-adrenergic receptor, triggering events leading to receptor desensitization. beta ARK activity is markedly stimulated by the isoprenylated beta gamma subunit complex of heterotrimeric guanine nucleotide-binding proteins (G beta gamma), which translocates the kinase to the plasma membrane and thereby targets it to its receptor substrate. The amino-terminal two-thirds of beta ARK1 composes the receptor recognition and catalytic domains, while the carboxyl third contains the G beta gamma binding sequences, the targeting domain. We prepared this domain as a recombinant His6 fusion protein from Escherichia coli and found that it had both independent secondary structure and functional activity. We demonstrated the inhibitory properties of this domain against G beta gamma activation of type II adenylyl cyclase both in a reconstituted system utilizing Sf9 insect cell membranes and in a permeabilized 293 human embryonic kidney cell system. Gi alpha-mediated inhibition of adenylyl cyclase was not affected. These data suggest that this His6 fusion protein derived from the carboxyl terminus of beta ARK1 provides a specific probe for defining G beta gamma-mediated processes and for studying the structural features of a G beta gamma-binding domain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Decreased activity of the guanine nucleotide regulatory protein (N) of the adenylate cyclase system is present in cell membranes of some patients with pseudohypoparathyrodism (PHP-Ia) whereas others have normal activity of N (PHP-Ib). Low N activity in PHP-Ia results in a decrease in hormone (H)-stimulatable adenylate cyclase in various tissues, which might be due to decreased ability to form an agonist-specific high affinity complex composed of H, receptor (R), and N. To test this hypothesis, we compared beta-adrenergic agonist-specific binding properties in erythrocyte membranes from five patients with PHP-Ia (N = 45% of control), five patients with PHP-Ib (N = 97%), and five control subjects. Competition curves that were generated by increasing concentrations of the beta-agonist isoproterenol competing with [125I]pindolol were shallow (slope factors less than 1) and were computer fit to a two-state model with corresponding high and low affinity for the agonist. The agonist competition curves from the PHP-Ia patients were shifted significantly (P less than 0.02) to the right as a result of a significant (P less than 0.01) decrease in the percent of beta-adrenergic receptors in the high affinity state from 64 +/- 22% in PHP-Ib and 56 +/- 5% in controls to 10 +/- 8% in PHP-Ia. The agonist competition curves were computer fit to a "ternary complex" model for the two-step reaction: H + R + N in equilibrium HR + N in equilibrium HRN. The modeling was consistent with a 60% decrease in the functional concentration of N, and was in good agreement with the biochemically determined decrease in erythrocyte N protein activity. These in vitro findings in erythrocytes taken together with the recent observations that in vivo isoproterenol-stimulated adenylate cyclase activity is decreased in patients with PHP (Carlson, H. E., and A. S. Brickman, 1983, J. Clin. Endocrinol. Metab. 56:1323-1326) are consistent with the notion that N is a bifunctional protein interacting with both R and the adenylate cyclase. It may be that in patients with PHP-Ia a single molecular and genetic defect accounts for both decreased HRN formation and decreased adenylate cyclase activity, whereas in PHP-Ib the biochemical lesion(s) appear not to affect HRN complex formation.