911 resultados para Case Based Computing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Professionalism is a key attribute for health professionals. Yet, it is unknown how much faculty development is directed toward skills and behaviours of faculty professionalism. Faculty professionalism includes boundaries in teacher-student relationships, self-reflection, assuring one's own fitness for duty, and maintaining confidentiality when appropriate. METHODS: For five years, we have incorporated faculty professionalism as a routine agenda item for the monthly Physician Assistant Programme faculty meetings, allowing faculty members to introduce issues they are comfortable sharing or have questions about. We also have case discussions of faculty professionalism within faculty meetings every three months. RESULTS: Faculty professionalism is important in the daily work lives of faculty members and including this as part of routine agendas verifies its importance. A faculty survey showed that a majority look forward to the quarterly faculty professionalism case discussions. These have included attempted influence in the admissions process, student/faculty social boundaries, civic professionalism, students requesting medical advice, and self-disclosure. CONCLUSION: A preventive approach works better than a reactionary approach to faculty missteps in professionalism. Routine discussion of faculty professionalism normalizes the topic and is helpful to both new and experienced faculty members. We recommend incorporation of faculty professionalism as a regular agenda item in faculty meetings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There may be advantages to be gained by combining Case-Based Reasoning (CBR) techniques with numerical models. In this paper we consider how CBR can be used as a flexible query engine to improve the usability of numerical models. Particularly they can help to solve inverse and mixed problems, and to solve constraint problems. We discuss this idea with reference to the illustrative example of a pneumatic conveyor. We describe a model of the problem of particle degradation in such a conveyor, and the problems faced by design engineers. The solution of these problems requires a system that allows iterative sharing of control between user, CBR system, and numerical model. This multi-initiative interaction is illustrated for the pneumatic conveyor by means of Unified Modeling Language (UML) collaboration and sequence diagrams. We show approaches to the solution of these problems via a CBR tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a case-based reasoning (CBR) approach solving educational time-tabling problems. Following the basic idea behind CBR, the solutions of previously solved problems are employed to aid finding the solutions for new problems. A list of feature-value pairs is insufficient to represent all the necessary information. We show that attribute graphs can represent more information and thus can help to retrieve re-usable cases that have similar structures to the new problems. The case base is organised as a decision tree to store the attribute graphs of solved problems hierarchically. An example is given to illustrate the retrieval, re-use and adaptation of structured cases. The results from our experiments show the effectiveness of the retrieval and adaptation in the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies Knowledge Discovery (KD) using Tabu Search and Hill Climbing within Case-Based Reasoning (CBR) as a hyper-heuristic method for course timetabling problems. The aim of the hyper-heuristic is to choose the best heuristic(s) for given timetabling problems according to the knowledge stored in the case base. KD in CBR is a 2-stage iterative process on both case representation and the case base. Experimental results are analysed and related research issues for future work are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new hyper-heuristic method using Case-Based Reasoning (CBR) for solving course timetabling problems. The term Hyper-heuristics has recently been employed to refer to 'heuristics that choose heuristics' rather than heuristics that operate directly on given problems. One of the overriding motivations of hyper-heuristic methods is the attempt to develop techniques that can operate with greater generality than is currently possible. The basic idea behind this is that we maintain a case base of information about the most successful heuristics for a range of previous timetabling problems to predict the best heuristic for the new problem in hand using the previous knowledge. Knowledge discovery techniques are used to carry out the training on the CBR system to improve the system performance on the prediction. Initial results presented in this paper are good and we conclude by discussing the con-siderable promise for future work in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An earlier Case-based Reasoning (CBR) approach developed by the authors for educational course timetabling problems employed structured cases to represent the complex relationships between courses. Previous solved cases represented by attribute graphs were organized hierarchically into a decision tree. The retrieval searches for graph isomorphism among these attribute graphs. In this paper, the approach is further developed to solve a wider range of problems. We also attempt to retrieve those graphs that have common similar structures but also have some differences. Costs that are assigned to these differences have an input upon the similarity measure. A large number of experiments are performed consisting of different randomly produced timetabling problems and the results presented here strongly indicate that a CBR approach could provide a significant step forward in the development of automated system to solve difficult timetabling problems. They show that using relatively little effort, we can retrieve these structurally similar cases to provide high quality timetables for new timetabling problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a case-based heuristic selection approach for automated university course and exam timetabling. The method described in this paper is motivated by the goal of developing timetabling systems that are fundamentally more general than the current state of the art. Heuristics that worked well in previous similar situations are memorized in a case base and are retrieved for solving the problem in hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the problem and the problem solving situations along with specific heuristics for those problems. Secondly, we refine the case base and discard cases which prove to be non-useful in solving new problems. Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively as an intelligent approach to learn which heuristics work well for particular timetabling situations. We conclude by outlining and discussing potential research issues in this critical area of knowledge discovery for different difficult timetabling problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a case-based heuristic selection approach for automated university course and exam timetabling. The method described in this paper is motivated by the goal of developing timetabling systems that are fundamentally more general than the current state of the art. Heuristics that worked well in previous similar situations are memorized in a case base and are retrieved for solving the problem in hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the problem and the problem solving situations along with specific heuristics for those problems. Secondly, we refine the case base and discard cases which prove to be non-useful in solving new problems. Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively as an intelligent approach to learn which heuristics work well for particular timetabling situations. We conclude by outlining and discussing potential research issues in this critical area of knowledge discovery for different difficult timetabling problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Both primary and secondary gynaecological neuroendocrine (NE) tumours are uncommon, and the literature is scarce concerning their imaging features. Methods This article reviews the epidemiological, clinical and imaging features with pathological correlation of gynaecological NE tumours. Results The clinical features of gynaecological NE tumours are non-specific and depend on the organ of origin and on the extension and aggressiveness of the disease. The imaging approach to these tumours is similar to that for other histological types and the Revised International Federation of Gynecology and Obstetrics (FIGO) Staging System also applies to NE tumours. Neuroendocrine tumours were recently divided into two groups: poorly differentiated neuroendocrine carcinomas (NECs) and well-differentiated neuroendocrine tumours (NETs). NECs include small cell carcinoma and large cell neuroendocrine carcinoma, while NETs account for typical and atypical carcinoids. Cervical small cell carcinoma and ovarian carcinoid are the most common gynaecological NE tumours. The former typically behaves aggressively; the latter usually behaves in a benign fashion and tends to be confined to the organ. Conclusion While dealing with ovarian carcinoids, extraovarian extension, bilaterality and multinodularity raise the suspicion of metastatic disease. NE tumours of the endometrium and other gynaecological locations are very rare. Teaching Points • Primary or secondary neurondocrine (NE) tumours of the female genital tract are rare. • Cervical small cell carcinoma and ovarian carcinoids are the most common gynaecological NE tumours. • Cervical small cell carcinomas usually behave aggressively. • Ovarian carcinoids tend to behave in a benign fashion. • The imaging approach to gynaecological NE tumours and other histological types is similar.