922 resultados para Carvão mineral
Resumo:
A rapid method for classification of mineral waters is proposed. The discrimination power was evaluated by a novel combination of chemometric data analysis and qualitative multi-elemental fingerprints of mineral water samples acquired from different regions of the Brazilian territory. The classification of mineral waters was assessed using only the wavelength emission intensities obtained by inductively coupled plasma optical emission spectrometry (ICP OES), monitoring different lines of Al, B, Ba, Ca, Cl, Cu, Co, Cr, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Sb, Si, Sr, Ti, V, and Zn, and Be, Dy, Gd, In, La, Sc and Y as internal standards. Data acquisition was done under robust (RC) and non-robust (NRC) conditions. Also, the combination of signal intensities of two or more emission lines for each element were evaluated instead of the individual lines. The performance of two classification-k-nearest neighbor (kNN) and soft independent modeling of class analogy (SIMCA)-and preprocessing algorithms, autoscaling and Pareto scaling, were evaluated for the ability to differentiate between the various samples in each approach tested (combination of robust or non-robust conditions with use of individual lines or sum of the intensities of emission lines). It was shown that qualitative ICP OES fingerprinting in combination with multivariate analysis is a promising analytical tool that has potential to become a recognized procedure for rapid authenticity and adulteration testing of mineral water samples or other material whose physicochemical properties (or origin) are directly related to mineral content.
Resumo:
This work makes a comparative economic analysis of a small-, medium- and large-sized mineral water company, the three of which are localized in the State of Sao Paulo. All have the same lines of production such as glasses, bottles and big bottles. The analysis involves the cash flow comparison of the three companies.
Resumo:
The increasing volume of urban sewage nowadays generates considerable amount of sludge to be disposed of. One environmentally adequate destination could be the application of treated and stabilized sludge (biosolids) to forest plantations as fertilizer and soil conditioner. The purpose of this study was to analyze the feasibility of applying sewage sludge, evaluating its effects on native tree seedlings. The species evaluated were aroeira-pimenteira (Schinus terebinthifolia Raddi), cabreuva-vermelha (Myroxy-Ion peruiferum L. f.), pau-de-viola (Cytarexyllum myrianthum Cham), unha-de-vaca (Bauhinia forficata Link), which are usually planted in forest restoration. Seedlings were cultivated in pots, containing a volume of 4 dm(3) of soil, within a greenhouse. The study was developed in the proximity of Campinas, SP, Brazil, and installed in November, 2003. The design was entirely randomized including seven treatments: control; mineral fertilization; and different doses of sewage sludge (biosolids) complemented with potassium, due to the low concentration of this element in the sludge produced by the wastewater treatment plant of Barueri (Metropolitan region of Sao Paulo city). The results showed that the application of different dosages of biosolids promoted different responses in stem height and biomass production. The treatment with 20 g/dm(3) of dry sewage sludge promoted both the highest growth and the highest seedling biomass production, compared to the control treatment. All native tree species treated with the highest dosage of sewage sludge showed a growth similar to that of mineral fertilization. The seedlings of aroeira-pimenteira, pau-de-viola, and unha-de-vaca, all typical species of the initial succession in natural forest ecosystems, grew and produced more biomass than cabreuva-vermelha, a typical species of the final forest succession.
Resumo:
A study was conducted in Brazil to identify factors affecting grazing distribution of yearling Nelore cross heifers and to evaluate the efficacy of placement of a salt-mineral mix away from water to improve uniformity of grazing. Two pastures (25 ha and 42 ha) were evaluated for four 15-d sessions. Mineral mix was placed 590 m to 780 m from water during two sessions and at water for two sessions. Stubble heights were measured at the beginning and end of each session in 1-ha subunits of each pasture. Cattle locations were recorded oil clay 13 and 14 of each session by horseback observers. Heifers avoided areas with a preponderance of forbs and taller grass (P < 0.001). For the first 15 days of the study cattle avoided subunits farther from water. Thereafter, horizontal distance from water had no affect on grazing use (P > 0.10). Stubble height reduction was more uniform (P < 0.05) when the mineral mix was Lit water compared to away from water. In contrast, heifers spent less time farther from water when Mineral mix was placed at water (P = 0.02) based Oil Visual observations. Strategic placement of a salt-mineral mix away from water does not appear to be a reliable tool to improve cattle grazing distribution in humid tropical pastures from 25 ha to 45 ha in size.
Resumo:
This study reports the effects of dietary iron (Fe) deficiency and recovery on bone mineral composition and strength in anemic rats submitted to a hemoglobin (Hb) repletion assay. Weanling male Wistar rats were fed a low-Fe diet (12 mg/kg) for 15 days followed by 2 weeks of Fe repletion with diets providing 35 mg Fe/kg as either ferrous sulfate (n = 8) or ferric pyrophosphate (FP; n = 12). At final day of each period (depletion and repletion), Fe-adequate animals were also euthanized. Iron status (blood Hb, Hb Fe pool, Hb regeneration efficiency), tibia mineral concentrations (Ca, Mg, Fe, Cu, and Zn) and biomechanical properties were evaluated. Iron-deficient rats had lower tibia Fe and Mg levels and bone strength when compared to controls. Yield load and resilience were positively related to tibia Mg levels (r = 0.47, P = 0.02 and r = 0.56, P = 0.004, respectively). Iron repletion did not recover tibia Mg concentrations impaired by Fe deficiency. Moreover, bone elastic properties were negatively affected by FP consumption. In conclusion, bone mineral composition and strength were affected by Fe deficiency, whereas dietary Fe source influenced tibia Mg and resistance in the period during which rats were recovering from anemia.
Resumo:
Introduction: Osteogenic effects of therapeutic fluoride have been reported; however, the impact of exposure to low level water fluoridation on bone density is not clear. We investigated the effect of long-term exposure to fluoridated water from growth to young adulthood on bone mineral density (BMD). Methods: BMD was measured in 24 healthy women from Regina (fluoride 0.1 mg/L) and 33 from Saskatoon (fluoride 1.0 mg/L), with no differences between groups for height, weight, lifestyle or dietary factors. Results: Saskatoon women had significantly higher mean BMD at total anterior-posterior lumbar spine (APS) and estimated volumetric L3 (VLS), with no difference at total body (TB) or proximal femur (PF). Conclusion: Exposure to water fluoridation during the growing years may have a power impact on axial spine bone density in young women.
Resumo:
Background and objectives: The greatest increase in bone mineral content occurs during adolescence. The amount of bone accrued may significantly affect bone mineral status in later life. We carried out a longitudinal investigation of the magnitude and timing of peak bone mineral content velocity (PBMCV) in relation to peak height velocity (PHV) and the age at menarche in a group of adolescent girls over a 6-year period. Methods: The 53 girls in this study are a subset of the 115 girls (initially 8 to 16 years) in a g-year longitudinal study of bone mineral accretion. The ages at PBMCV and PHV were determined by using a cubic spline curve fitting procedure. Determinations were based on height (n = 12) and bone (n = 6) measurements over 6 years. Results: The timing of PBMCV and menarche were coincident, preceded approximately 1 year earlier by PHV. Correlation showed a negative relationship between age at menarche and both peak bone mineral accrual (r = -0.42, P
Resumo:
Back,ground To examine the role of long-term swimming exercise on regional and total body bone mineral density (BMD) in men. Methods. Experimental design: Cross-sectional. Setting: Musculoskeletal research laboratory at a medical center, Participants:We compared elite collegiate swimmers (n=11) to age-, weight-, and height-matched non-athletic controls (n=11), Measures: BMD (g/cm(2)) of the lumbar spine L2-4, proximal femur (femoral neck, trochanter, Ward's triangle), total body and various subregions of the total body, as well as regional and total body fat and bone mineral-free lean mass (LM) was assessed by dual-energy X-ray absorptiometry (DXA, Hologic QDR 1000/W). Results. Swimmers, who commenced training at 10.7+/-3.7 yrs (mean+/-SD) and trained for 24.7+/-4.2 hrs per week, had a greater amount of LM (p<0.05), lower fat mass (p<0.001) and percent body fat (9.5 vs 16.2 %, p<0.001) than controls. There was no significant difference between groups for regional or total body BRID, In stepwise multiple regression analysis, body weight was a consistent independent predictor of regional and total body BMD, Conclusions. These results suggest that long-term swimming is not an osteogenic mode of training in college-aged males. This supports our previous findings in young female swimmers who displayed no bone mass benefits despite long-standing athletic training.
Resumo:
To investigate the influence of physical activity on bone mineral accrual during the adolescent years, we analyzed 6 years of data from 53 girls and 60 boys. Physical activity, dietary intakes, and anthropometry were measured every 6 months and dual-energy X-ray absorptiometry scans of the total body (TB), lumbar spine (LS), and proximal femur (Hologic 2000, array mode) were collected annually. Distance and velocity curves for height and bone mineral content (BMC) were fitted for each child at several skeletal sites using a cubic spline procedure, from which ages at peak height velocity (PHV) and peak BMC velocity (PBMCV) were identified. A mean age- and gender-specific standardized activity (Z) score was calculated for each subject based on multiple yearly activity assessments collected up until age of PHV. This score was used to identify active (top quartile), average (middle 2 quartiles), or inactive (bottom quartile) groups. Two-way analysis of covariance, with height and weight at PHV controlled for, demonstrated significant physical activity and gender main effects (but no interaction) for PBMCV, for BMC accrued for 2 years around peak velocity, and for BMC at 1 year post-PBMCV for the TB and femoral neck and for physical activity but not gender at the LS (all p < 0.05). Controlling for maturational and size differences between groups, we noted a 9% and 17% greater TB BMC for active boys and girls, respectively, over their inactive peers 1 year after the age of PBMCV. We also estimated that, on average, 26% of adult TB bone mineral was accrued during the 2 years around PBMCV.
Resumo:
Hydrothermal alteration of a quartz-K-feldspar rock is simulated numerically by coupling fluid flow and chemical reactions. Introduction of CO2 gas generates an acidic fluid and produces secondary quartz, muscovite and/or pyrophyllite at constant temperature and pressure of 300 degrees C and 200 MPa. The precipitation and/or dissolution of the secondary minerals is controlled by either mass-action relations or rate laws. In our simulations the mass of the primary elements are conserved and the mass-balance equations are solved sequentially using an implicit scheme in a finite-element code. The pore-fluid velocity is assumed to be constant. The change of rock volume due to the dissolution or precipitation of the minerals, which is directly related to their molar volume, is taken into account. Feedback into the rock porosity and the reaction rates is included in the model. The model produces zones of pyrophyllite quartz and muscovite due to the dissolution of K-feldspar. Our model simulates, in a simplified way, the acid-induced alteration assemblages observed in various guises in many significant mineral deposits. The particular aluminosilicate minerals produced in these experiments are associated with the gold deposits of the Witwatersrand Basin.
Resumo:
Two factors generally reported to influence bone density are body composition and muscle strength. However, it is unclear if these relationships are consistent across race and sex, especially in older persons. If differences do exist by race and/or sex, then strategies to maintain bone mass or minimize bone loss in older adults may need to be modified accordingly. Therefore, we examined the independent effects of bone mineral-free lean mass (LM), fat mass (FM), and muscle strength on regional and whole body bone mineral density (BMD) in a cohort of 2619 well-functioning older adults participating in the Health, Aging, and Body Composition (Health ABC) Study with complete measures. Participants included 738 white women, 599 black women, 827 white men, and 455 black men aged 70-79 years. BMD (g/cm(2)) of the femoral neck, whole body, upper and lower limb, and whole body and upper limb bone mineral-free LM and FM was assessed by dual-energy X-ray absorptiometry (DXA). Handgrip strength and knee extensor torque were determined by dynamometry. In analyses stratified by race and sex and adjusted for a number of confounders, LM was a significant (p < 0.001) determinant of BMD, except in white women for the lower limb and whole body. In women, FM also was an independent contributor to BMD at the femoral neck, and both PM and muscle strength contributed to limb BMD. The following were the respective Beta-weights (regression coefficients for standardized data, Std beta) and percent difference in BMD per unit (7.5 kg) LM: femoral neck, 0.202-0.386 and 4.7-6.9 %; lower limb,.0.209-0.357 and 2.9-3.5%; whole body, 0.239-0.484 and 3.0-4.7 %; and upper limb (unit = 0.5 kg), 0.231-0.407 and 3.1-3.4%. Adjusting for bone size (bone mineral apparent density [BMAD]) or body size BMD/height) diminished the importance of LM, and the contributory effect of FM became more pronounced. These results indicate that LM and FM were associated with bone mineral depending on the bone site and bone index used. Where differences did occur, they were primarily by sex not race. To preserve BMD, maintaining or increasing LM in the elderly would appear to be an appropriate strategy, regardless of race or sex.
Resumo:
The origin of the saline lakes in the Pantanal wetland has been classically attributed to processes occurring in past periods. However, recent studies have suggested that saline water is currently forming from evaporative concentration of fresh water, which is provided annually by seasonal floods. Major elements (Ca, Mg, K) and alkalinity appear to be geochemically controlled during the concentration of waters and may be involved in the formation of carbonates and clay minerals around the saline lakes. The mineralogy of soils associated with a representative saline lake was investigated using XRD, TEM-EDS, and ICP-MS in order to identify the composition and genesis of the secondary minerals suspected to be involved in the control of major elements. The results showed that Ca, Mg, and K effectively undergo oversaturation and precipitation as the waters become more saline. These elements are incorporated in the authigenically formed carbonates, smectites, and micas surrounding the saline lake. The control of Ca occurs by precipitation of calcite and dolomite in nodules while Mg and K are mainly involved in the neoformation of Mg-smectites (stevensitic and saponitic minerals) and, probably, iron-enriched micas (ferric-illite) in surface and subsurface horizons. Therefore, our study confirms that the salinity of Pantanal, historically attributed to inheritance from former regimes, has a contribution of current processes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: To analyse bone mineral density (BMD) in juvenile dermatomyositis (JDM) and its possible association with body composition, disease activity, duration of disease, glucocorticoid (GC) use, and biochemical bone parameters, including osteoprotegerin (OPG) and receptor activator of nuclear factor B (RANKL). Methods: Twenty girls with JDM and 20 controls matched for gender and age were selected. Body composition and BMD were analysed by dual-energy X-ray absorptiometry (DXA) and bone mineral apparent density (BMAD) was calculated. Duration of disease, cumulative GC, and GC pulse therapy use were determined from medical records. Disease activity and muscle strength were measured by the Disease Activity Score (DAS), the Childhood Myositis Assessment Scale (CMAS), and the Manual Muscle Test (MMT). Inflammatory and bone metabolism parameters were also analysed. OPG and RANKL were measured in patients and controls using an enzyme-linked immunosorbent assay (ELISA). Results: A lower BMAD in the femoral neck (p< 0.001), total femur (p< 0.001), and whole body (p=0.005) was observed in JDM patients compared to controls. Body composition analysis showed a lower lean mass in JDM compared to controls (p=0.015), but no difference was observed with regard to fat mass. A trend of lower serum calcium was observed in JDM (p=0.05), whereas all other parameters analysed, including OPG and RANKL, were similar. Multiple linear regression analysis revealed that, in JDM, lean mass (p< 0.01) and GC pulse therapy use (p< 0.05) were independent factors for BMAD in the hip region. Conclusions: This study has identified low lean mass and GC pulse therapy use as the major factors for low hip BMAD in JDM patients.