985 resultados para Cardiovascular Regulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intermedin (IMD) is a novel peptide related to calcitonin gene-related peptide (CGRP) and adrenomedullin (AM). Proteolytic processing of a larger precursor yields a series of biologically active C-terminal fragments, IMD1–53, IMD1–47 and IMD8–47. IMD shares a family of receptors with AM and CGRP composed of a calcitonin-receptor like receptor (CALCRL) associated with one of three receptor activity modifying proteins (RAMP). Compared to CGRP, IMD is less potent at CGRP1 receptors but more potent at AM1 receptors and AM2 receptors; compared to AM, IMD is more potent at CGRP1 receptors but less potent at AM1 and AM2 receptors. The cellular and tissue distribution of IMD overlaps in some aspects with that of CGRP and AM but is distinct from both. IMD is present in neonatal but absent or expressed sparsely, in adult heart and vasculature and present at low levels in plasma. The prominent localization of IMD in hypothalamus and pituitary and in kidney is consistent with a physiological role in the central and peripheral regulation of the circulation and water-electrolyte homeostasis. IMD is a potent systemic and pulmonary vasodilator, influences regional blood flow and augments cardiac contractility. IMD protects myocardium from the deleterious effects of oxidative stress associated with ischaemia-reperfusion injury and exerts an anti-growth effect directly on cardiomyocytes to oppose the influence of hypertrophic stimuli. The robust increase in expression of the peptide in hypertrophied and ischaemic myocardium indicates an important protective role for IMD as an endogenous counter-regulatory peptide in the heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rat retinae were dissociated to yield intact microvessels 7 to 42 microm in diameter. These were loaded with fura-2 AM and single fragments anchored down in a recording bath. Intracellular Ca(2+) levels from 20- to 30-microm sections of vessel were estimated by microfluorimetry. The vessels studied were identified as metarterioles and arterioles. Only the microvascular smooth muscle cells loaded with fura-2 AM and changes in the fluorescence signal were confined to these cells: Endothelial cells did not make any contribution to the fluorescence signal nor did they contribute to the actions of the drugs. Caffeine (10 mM) or elevated K(+) (100 mM) produced a transient rise in cell Ca(2+) in the larger vessels (diameters >18 microm) but had no effect on smaller vessels (diameters 30 min) on washing out the endothelin and the vessel failed to relax. These results demonstrate heterogeneity between smaller and larger retinal vessels with regard to Ca(2+) mobilisation and homogeneity with respect to the actions of vasoactive peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vagal baroreflex sensitivity (BRS) is a measure of short term blood pressure (BP) regulation through alterations in heart rate. Low BRS reflects impaired autonomic system regulation and has been found to be a surrogate marker for cardiovascular health. In particular, it has found to be associated with the pathogenesis of adult hypertension. However, only limited information exists as to the negative consequences of childhood BP on baroreflex function. The objective of this study was to investigate BRS in children with 2 different BP profiles while controlling for the effects of age, maturation, sex, and body composition. A preliminary subsample of 11-14 year-old children from the HBEAT (Heart Behavioural Environmental Assessment Team) Study was selected. The children were divided into 2 BP groups; high BP (HBP; 2:95tl1 percentile, n=21) and normal BP (NBP; <90th percentile, n=85). Following an initial 15 minutes of supine rest, 5 minutes of continuous beat-to-beat BP (Finapres) and RR interval (RRI) were recorded (standard ECG). Spectral indices were computed using Fast Fourier Transform and transfer function analysis was used to compute BRS. High frequency (HF) and low frequency (LF) power spectral areas were set to 0.15-0.4 Hz and 0.04-0.15 Hz, respectively. Body composition was measured using body mass index. After adjusting for body composition, maturation, age and sex ANCOV A results were as follows; LF and HF BRS, LF and HF RRI, and RRI total power were lower in the HBP versus NBP participants (p<0.05). As well, LF IHF SBP ratio was significantly higher in the HBP compared to the NBP group (p<0.05). The regression coefficients (unstandardized B) indicated that in changing groups (NBP to HBP) LF and HF BRS decreases by 4.04 and 6.18 ms/mmHg, respectively. Thus, as BP increases, BRS decreases. These data suggest that changes in autonomic activity occur in children who have HBP, regardless of age, sex, maturation, and body composition. Thus, despite their young age and relatively short amount of time having high BP compared with adults, these children are already demonstrating poor BP regulation and reduced cardiovagal activity. Given that childhood BP is associated with hypertension in adulthood, there is a growing concern in regards to the current cardiovascular health of our children and future adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’hypertension artérielle est le facteur de risque le plus important dans les maladies cardiovasculaires (MCV) et les accidents vasculaires cérébraux (AVC). L’hypertension artérielle essentielle est une maladie complexe, multifactorielle et polygénique. Même si on a identifié de nombreux facteurs de risque de l’hypertension artérielle, on ne comprend pas encore clairement les mécanismes qui la régissent. Les kinases hépatocytes produisant l’érythropoïétine (Eph) constituent la plus grande famille des récepteurs tyrosine kinase qui se lient à des ligands de surface cellulaire appelés éphrines sur les cellules avoisinantes. On sait que les interactions de Eph et des éphrines sont essentielles aussi bien dans les processus de développement que dans le fonctionnement des organes et des tissus adultes. Cependant on n’a pas encore étudié la relation entre Eph/éphrines et l’hypertension artérielle. Nous avons créé des modèles de souris knockout (K.O.) Ephb6-/-, Efnb1-/- et Efnb3-/- pour cette étude. Dans le modèle EphB6-/-, nous avons observé que les souris K.O. Ephb6 castrées, mais pas les femelles, ainsi que les souris mâles non castrées présentaient une tension artérielle élevée (TA) par rapport à leurs homologues de type sauvage (TS). Ceci suggère que Ephb6 doit agir de concert avec l’hormone sexuelle mâle pour réguler la TA. Les petites artères des mâles castrés Ephb6-/- présentaient une augmentation de la contractilité, une activation de RhoA et une phosphorylation constitutive de la chaîne légère de la myosine (CLM) lorsque comparées à celles de leurs homologues TS. Ces deux derniers résultats indiquent que la phosphorylation de CLM et de RhoA passe par la voie de signalisation de Ephb6 dans les cellules du muscle lisse de la paroi vasculaire (CMLV). Nous avons démontré que la réticulation de Efnbs mais non celle de Ephb6 aboutit à une réduction de la contractilité des CMLV. Ceci montre que l’effet de Ephb6 passe par la signalisation inversée à travers Efnb. Dans le modèle Efnb1-/- conditionnel spécifique au muscle lisse, nous n’avons observé aucune différence entre Efnb1-/- et les souris de TS concernant la mesure de la TA dans des conditions normales. Cependant, la TA des souris K.O. Efnb1 lors d’un stress d’immobilisation est supérieure à celle des souris de TS. Dans les petites artères des souris K.O. Efnb1, le rétrécissement et la phosphorylation de CLM étaient élevés. In vitro, la contractilité et l’activation RhoA de la CMLV des souris TS étaient augmentées quand leur Efnb1 était réticulé. Ces résultats corroborent ceux des souris KO Ephb6 et prouvent que l’effet de Ephb6 dans le contrôle de la TA se produit au moins par l’intermédiaire d’un de ses ligands Efnb1 dans les CMLV. Dans le modèle Efnb3-/-, on a observé une augmentation de la TA et du rétrécissement des vaisseaux chez les femelles Efnb3-/-, mais non chez les mâles; l’échographie a aussi révélé une résistance accrue au débit sanguin des souris K.O. femelles. Cependant la mutation de Efnb3 ne modifie pas la phosphorylation de la CLM ou l’activation de RhoA in vivo. Dans l’expérience in vitro, les CMLV des souris femelles Efnb3-/- ont présenté une augmentation de la contractilité mais pas celle des souris mâles Efnb3-/-. La réticulation des CMLV chez les mâles ou les femelles de TS avec solide anti-Efnb3 Ab peut réduire leur contractilité. Notre étude est la première à évaluer le rôle de Eph/éphrines dans la régulation de la TA. Elle montre que les signalisations Eph/éphrines sont impliquées dans le contrôle de la TA. La signalisation inverse est principalement responsable du phénotype élevé de la TA. Bien que les Efnb1, Efnb3 appartiennent à la même famille, leur fonction et leur efficacité dans la régulation de la TA pourraient être différentes. La découverte de Eph/Efnb nous permet d’explorer plus avant les mécanismes qui gouvernent la TA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alpha-, beta- and gamma-melanocyte stimulating hormones (MSHs) are peptides derived from the ACTH precursor, pro-opiomelanocortin. All three peptides have been highly conserved throughout evolution but their exact biological function in mammals is still largely obscure. In recent years, there has been a surge of interest in alpha-MSH and its role in the regulation of feeding. Gamma-MSH by contrast has been shown to be involved in the regulation of adrenal steroidogenesis and also has effects on the cardiovascular and renal systems. This review will provide an overview of the role that gamma-MSH peptides play in the regulation of adrenal steroidogenesis. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Several lines of evidence suggest that the dietary isoflavone genistein (Gen) has beneficial effects with regard to cardiovascular disease and in particular on aspects related to blood pressure and angiogenesis. The biological action of Gen may be, at Least in part, attributed to its ability to affect cell signalling and response. However, so far, most of the molecular mechanisms underlying the activity of Gen in the endothelium are unknown. Methods and results: To examine the transcriptional response to 2.5 mu M Gen on primary human endothelial cells (HUVEC), we applied cDNA array technology both under baseline condition and after treatment with the pro-atherogenic stimulus, copper-oxidized LDL. The alteration of the expression patterns of individual transcripts was substantiated using either RT-PCR or Northern blotting. Gen significantly affected the expression of genes encoding for proteins centrally involved in the vascular tone such as endothelin-converting enzyme-1, endothetin-2, estrogen related receptor a and atria[ natriuretic peptide receptor A precursor. Furthermore, Gen countered the effect of oxLDL on mRNA levels encoding for vascular endothelial growth factor receptor 165, types 1 and 2. Conclusions: Our data indicate that physiologically achievable levels of Gen change the expression of mRNA encoding for proteins involved in the control of blood pressure under baseline conditions and reduce the angiogenic response to oxLDL in the endothelium. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Protein kinase C (PKC) plays a pivotal role in modulating the growth and differentiation of many cell types including the cardiac myocyte. However, little is known about molecules that act immediately downstream of PKC in the heart. In this study we have investigated the expression of 80K/MARCKS, a major PKC substrate, in whole ventricles and in cardiac myocytes from developing rat hearts. Methods: Poly A+ RNA was prepared from neonatal (2-day) and adult (42-day) cardiac myocytes and whole ventricular tissue and mRNA expression determined by reverse transcription-polymerase chain reaction (RT-PCR) using primers designed to identify a 420 bp fragment in the 80K/MARCKS gene. Protein extracts were prepared from either 2-day and 42-day cardiac myocytes or from whole ventricular tissue at 2, 5–11, 14, 17, 21, 28 and 42 days of age. Protein expression was determined by immunoblotting with an 80K/MARCKS antipeptide antibody and PKC activity was determined by measuring the amount of γ32P-ATP transferred to a specific peptide substrate. Results: RT-PCR analysis of 80K/MARCKS mRNA in neonatal (2-day) and adult (42-day) cardiac myocytes showed the expression of this gene in both cell types. Immunoblotting revealed maximum 80K/MARCKS protein expression in whole ventricular tissue at 5 days (a 75% increase above values at 2 days), followed by a transient decrease in expression during the 6–8-day period (61% of the protein expressed at 2 days for 8-day tissue) with levels returning to 5 day levels by 11 days of age. 80K/MARCKS protein was present in cardiac myocytes at 2 days of age whereas it was not detectable in adult cells. In addition, PKC activity levels increased to 160% of levels present at 2 days in 8-day-old ventricles with PKC activity levels returning to 5-day levels by 9 days of age. This was then followed by a steady decline in both 80K/MARCKS protein expression and PKC activity through to adulthood. Conclusions: Expression of the PKC substrate, 80K/MARCKS, in cardiac myocytes changes significantly during development and the transient loss of immunoreactive protein during the 6–8-day developmental period may reflect 80K/MARCKS phosphorylation and subsequent down-regulation as a result of the concomitant up-regulation of PKC activity at this time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central role of immune-receptorlike signaling mechanisms in the activation of platelets at sites of vascular injury is well established. Of equal importance to the regulatory systems that control the activation of platelets are those systems that negatively regulate platelets and thereby prevent inappropriate platelet activation and thrombosis. Recent reports have identified a new mechanism through which this may be achieved, which involves signaling via a receptor that contains an immunoreceptor tyrosine-based inhibitory motif (ITIM). The role of ITIMs in the control of platelet function is the subject of this review.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Centrally injected histamine (HA) affects heart rate (HR), arterial blood pressure (BP), and sympathetic activity in rats. The posterodorsal medial amygdala (MePD) has high levels of histidine decarboxylase, connections with brain areas involved with the modulation of cardiovascular responses, and is relevant for the pathogenesis of hypertension. However, there is no report demonstrating the role of the MePD histaminergic activity on the cardiovascular function in awake rats. The alms of the present work were: 1) to study the effects of two doses (10-100 nM) of HA microinjected in the MePD on basal cardiovascular recordings and on baroreflex- and chemoreflex-mediated responses; 2) to reveal whether cardiovascular reflex responses could be affected by MePD microinjections of (R)-alpha-methylhistamine (AH(3)), an agonist of the inhibitory autoreceptor H(3); and, 3) to carry out a power spectral analysis to evaluate the contribution of the sympathetic and parasympathetic components in the variability of the HR and BP recordings. When compared with the control group (microinjected with saline, 0.3 mu l), HA (10 nM) promoted an increase in the MAP(50), i.e. the mean value of BP at half of the HR range evoked by the baroreflex response. Histamine (100 nM) did not affect the baroreflex activity, but significantly decreased the parasympathetic component of the HR variability, increased the sympathetic/parasympathetic balance at basal conditions (these two latter evaluated by the power spectral analysis), and promoted an impairment in the chemoreflex bradycardic response. Microinjection of AH(3) (10 mu M) led to mixed results, which resembled the effects of both doses of HA employed here. Present data suggest that cardiovascular changes induced by baroreceptors and chemoreceptors involve the histaminergic activity in the MePD. This neural regulation of reflex cardiovascular responses can have important implications for homeostatic and allostatic conditions and possibly for the behavioral displays modulated by the rat MePD. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given that (1) the renin-angiotensin system (RAS) is compartmentalized within the central nervous system in neurons and glia (2) the major source of brain angiotensinogen is the glial cells, (3) the importance of RAS in the central control of blood pressure, and (4) nicotine increases the probability of development of hypertension associated to genetic predisposition; the objective of the present study was to evaluate the effects of nicotine on the RAS in cultured glial cells from the brainstem and hypothalamus of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Ligand binding, real-time PCR and western blotting assays were used to compare the expression of angiotensinogen, angiotensin converting enzyme, angiotensin converting enzyme 2 and angiotensin II type1 receptors. We demonstrate, for the first time, that there are significant differences in the basal levels of RAS components between WKY and SHR rats in glia from 1-day-old rats. We also observed that nicotine is able to modulate the renin-angiotensin system in glial cells from the brainstem and hypothalamus and that the SHR responses were more pronounced than WKY ones. The present data suggest that nicotine effects on the RAS might collaborate to the development of neurogenic hypertension in SHR through modulation of glial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synbranchus marmoratus is a facultative air-breathing fish, which uses its buccal cavity as well as its gills for air-breathing. S. marmoratus shows a very pronounced tachycardia when it surfaces to air-breathe. An elevation of heart rate decreases cardiac filling time and therefore may cause a decline in stroke volume (VS), but this can be compensated for by an increase in venous tone to maintain stroke volume. Thus, the study on S. marmoratus was undertaken to investigate how stroke volume and venous function are affected during air-breathing. To this end we measured cardiac output (Q), heart rate (fH), central venous blood pressure (PCV), mean circulatory filling pressure (MCFP), and dorsal aortic blood pressures (PDA) in S. marmoratus. Measurements were performed in aerated water (P-O2 > 130 mmHg), when the fish alternated between gill ventilation and prolonged periods of apnoeas, as well as during hypoxia (P-O2 <= 50 mmHg), when the fish changed from gill ventilation to air-breathing. Q increased significantly during gill ventilation compared to apnoea in aerated water through a significant increase in both fH and VS. PCV and MCFP also increased significantly. During hypoxia, when the animals surface to ventilate air, we found a marked rise in fH, PCV, MCFP, Q and VS, whereas PDA decreased significantly. Simultaneous increases in PCV and MCFP in aerated, as well as in hypoxic water, suggests that the venous system plays an important regulatory role for cardiac filling and VS in this species. In addition, we investigated adrenergic regulation of the venous system through bolus infusions of adrenergic agonists (adrenaline, phenylephrine and isoproterenol; 2 mu g kg(-1)). Adrenaline and phenylephrine caused a marked rise in PCV and MCFP, whereas isoproterenol led to a marked decrease in PCV, and tended to decrease MCFP. Thus, it is evident that stimulation of both alpha- and beta-adrenoreceptors affects venous tone in S. marmoratus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: auditory stimulation, autonomic nervous system, music and heart rate variability. The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both acute (1 day) lesions of the commissural nucleus of the solitary tract (commNTS) and aortic baroreceptor denervation increase pressor responses to bilateral common carotid occlusion (BCO) during a 60-second period in conscious rats. In this study, we investigated the following: (1) the effects of commNTS lesions on basal mean arterial pressure (MAP) and heart rate (HR) of aortic denervated (ADNx) rats; (2) the effects of acute commNTS lesions on pressor responses to BCO in ADNx rats; and (3) the effects of chronic (10 days) commNTS lesions on the pressor response to BCO. ADNx increased basal MAP and HR in sham-lesioned rats. Acute commNTS lesions abolished the MAP and HR increases observed in ADNx rats. Acute commNTS lesions increased the pressor responses to BCO in rats with intact- baroreceptor innervation but produced no additional change in the pressor response to BCO in ADNx rats. Chronic commNTS lesions did not change the pressor responses to BCO in rats with intact-baroreceptor innervation. The data show that acute commNTS lesions abolish the MAP increase produced by aortic baroreceptor denervation. They also suggest that acute commNTS lesions enhance the pressor response to BCO by partial withdrawal of aortic baroreceptor inputs into the NTS. Chronically, reorganization in the remaining aortic baroreceptor or in the baroreflex function as a whole might produce normalization of the cardiovascular responses to BCO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this study was to analyze the effect of the pedaling cadence (500 × 100 rpm) on the heart rate (HR) and the blood lactate response during incremental and constant workload exercises in active individuals. Nine active male individuals (20.9 ± 2.9 years old; 73.9 ± 6.5 kg; 1.79 ± 0.9 m) were submitted to two incremental tests, and to 6-8 constant workload tests to determine the intensity corresponding to the maximal steady state lactate (MLSSintens) in both cadences. The maximal power (Pmax) attained during the incremental test, and the MLSSintens were significantly lower at 100 rpm (240.9 ± 12.6 W; 148.1 ± 154.W) compared to 50 rpm (263.9 ± 18.6 W; 186.1 ± 21.2 W), respectively. The HRmax did not change between cadences (50 rpm = 191.1 ± 8.8 bpm; 100 rpm = 192.6 ± 9.9 bpm). Regardless the cadence, the HRmax percentage (70, 80, 90, and 100%) determined the same lactate concentrations during the incremental test. However, when the intensity was expressed in Pmax percentage or in absolute power, the lactate and the HR values were always higher at highest cadences. The HR corresponding to MLSSintens was similar between cadences (50 rpm = 162.5 ± 9.1 bpm; 100 rpm = 160.4 ± 9.2 bpm). Based on these results, it can be conclude that regardless the cadence employed (50 × 100 rpm), the use of the HR to individualize the exercise intensity indicates similar blood lactate responses, and this relationship is also kept in the exercise of constant intensity performed at MLSSintens. On the other hand, the use of the Pmax percentages depend on the cadence used, indicating different physiological responses to a same percentage.