897 resultados para Cardiac valves
Resumo:
Concurrent training is recommended for health improvement, but its acute effects on cardiovascular function are not well established. This study analyzed hemodynamics and autonomic modulation after a single session of aerobic (A), resistance (R), and concurrent (A + R) exercises. Twenty healthy subjects randomly underwent four sessions: control (C:30 min of rest), aerobic (A:30 min, cycle ergometer, 75% of VO(2) peak), resistance (R:6 exercises, 3 sets, 20 repetitions, 50% of 1 RM), and concurrent (AR: A + R). Before and after the interventions, blood pressure (BP), heart rate (HR), cardiac output (CO), and HR variability were measured. Systolic BP decreased after all the exercises, and the greatest decreases were observed after the A and AR sessions (-13 +/- 1 and -11 +/- 1 mmHg, respectively, P < 0.05). Diastolic BP decreased similarly after all the exercises, and this decrease lasted longer after the A session. CO also decreased similarly after the exercises, while systemic vascular resistance increased after the R and AR sessions in the recovery period (+4.0 +/- 1.7 and +6.3 +/- 1.9 U, respectively, P < 0.05). Stroke volume decreased, while HR increased after the exercises, and the greatest responses were observed after the AR session (SV, A = -14.6 +/- 3.6, R = -22.4 +/- 3.5 and AR = -23.4 +/- 2.4 ml; HR, A = +13 +/- 2, R = +15 +/- 2 vs. AR = +20 +/- 2 bpm, P < 0.05). Cardiac sympathovagal balance increased after the exercises, and the greatest increase was observed after the AR session (A = +0.7 +/- 0.8, R = +1.0 +/- 0.8 vs. AR = +1.2 +/- 0.8, P < 0.05). In conclusion, the association of aerobic and resistance exercises in the same training session did not potentiate postexercise hypotension, and increased cardiac sympathetic activation during the recovery period.
Resumo:
beta-blockers, as class, improve cardiac function and survival in heart failure (HF). However, the molecular mechanisms underlying these beneficial effects remain elusive. In the present study, metoprolol and carvedilol were used in doses that display comparable heart rate reduction to assess their beneficial effects in a genetic model of sympathetic hyperactivity-induced HF (alpha(2A)/alpha(2C)-ARKO mice). Five month-old HF mice were randomly assigned to receive either saline, metoprolol or carvedilol for 8 weeks and age-matched wild-type mice (WT) were used as controls. HF mice displayed baseline tachycardia, systolic dysfunction evaluated by echocardiography, 50% mortality rate, increased cardiac myocyte width (50%) and ventricular fibrosis (3-fold) compared with WT. All these responses were significantly improved by both treatments. Cardiomyocytes from HF mice showed reduced peak [Ca(2+)](i) transient (13%) using confocal microscopy imaging. Interestingly, while metoprolol improved [Ca(2+)](i) transient, carvedilol had no effect on peak [Ca(2+)](i) transient but also increased [Ca(2+)] transient decay dynamics. We then examined the influence of carvedilol in cardiac oxidative stress as an alternative target to explain its beneficial effects. Indeed, HF mice showed 10-fold decrease in cardiac reduced/oxidized glutathione ratio compared with WT, which was significantly improved only by carvedilol treatment. Taken together, we provide direct evidence that the beneficial effects of metoprolol were mainly associated with improved cardiac Ca(2+) transients and the net balance of cardiac Ca(2+) handling proteins while carvedilol preferentially improved cardiac redox state. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Exercise training (ET) is a coadjuvant therapy in preventive cardiology. It delays cardiac dysfunction and exercise intolerance in heart failure (HF); however, the molecular mechanisms underlying its cardioprotection are poorly understood. We tested the hypothesis that ET would prevent Ca2+ handling abnormalities and ventricular dysfunction in sympathetic hyperactivity-induced HF mice. A cohort of male wildtype (WT) and congenic (alpha 2A/alpha 2C)-adrenoceptor knockout ((alpha 2A/alpha 2C)ARKO) mice with C57BL6/J genetic background (3-5 mo of age) were randomly assigned into untrained and exercise-trained groups. ET consisted of 8-wk swimming session, 60 min, 5 days/wk. Fractional shortening (FS) was assessed by two-dimensional guided M-mode echocardiography. The protein expression of ryanodine receptor (RyR), phospho-Ser(2809)-RyR, sarcoplasmic reticulum Ca2+ ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLN), phospho-Ser(16)-PLN, and phospho-Thr(17)-PLN were analyzed by Western blotting. At 3 mo of age, no significant difference in FS and exercise tolerance was observed between WT and (alpha 2A/alpha 2C)ARKO mice. At 5 mo, when cardiac dysfunction is associated with lung edema and increased plasma norepinephrine levels, (alpha 2A/alpha 2C)ARKO mice presented reduced FS paralleled by decreased SERCA2 (26%) and NCX (34%). Conversely, (alpha 2A/alpha 2C)ARKO mice displayed increased phospho-Ser(16)-PLN (76%) and phospho-Ser(2809)-RyR (49%). ET in (alpha 2A/alpha 2C)ARKO mice prevented exercise intolerance, ventricular dysfunction, and decreased plasma norepinephrine. ET significantly increased the expression of SERCA2 (58%) and phospho-Ser(16)-PLN (30%) while it restored the expression of phospho-Ser(2809)-RyR to WT levels. Collectively, we provide evidence that improved net balance of Ca2+ handling proteins paralleled by a decreased sympathetic activity on ET are, at least in part, compensatory mechanisms against deteriorating ventricular function in HF.
Resumo:
Background: Studies have shown that the autonomic dysfunction accompanied by impaired baroreflex sensitivity was associated with higher mortality. However, the influence of decreased baroreflex sensitivity on cardiac function, especially in diastolic function, is not well understood. This study evaluated the morpho-functional changes associated with baroreflex impairment induced by chronic sinoaortic denervation (SAD). Methods and Results: Animals were divided into sinoaortic denervation (SAD) and control (C) groups. Baroreflex sensitivity was evaluated by tachycardic and bradycardic responses, induced by vasoactive drugs. Cardiac function was studied by echocardiography and by left ventricle (LV) catheterization. LV collagen content and the expression of regulatory proteins involved in intracellular Ca(2+) homeostasis were quantified. Results showed higher LV mass in SAD versus C animals. Furthermore, an increase in deceleration time of E-wave in the SAD versus the C group (2.14 +/- 0.07 ms vs 1.78 +/- 0.03 ms) was observed. LV end-diastolic pressure was increased and the minimum dP/dt was decreased in the SAD versus the C group (12 +/- 1.5 mm Hg vs 5.3 +/- 0.2 mm Hg and 7,422 +/- 201 vs 4,999 +/- 345 mm Hg/s, respectively). SERCA/NCX ratio was lower in SAD than in control rats. The same was verified in SERCA/PLB ratio. Conclusions: The results suggest that baroreflex dysfunction is associated with cardiac diastolic dysfunction independently of the presence of other risk factors. (J Cardiac Fail 2011;17:519-525)
Resumo:
Background The allele threonine (T) of the angiotensinogen has been associated with ventricular hypertrophy in hypertensive patients and soccer players. However, the long-term effect of physical exercise in healthy athletes carrying the T allele remains unknown. We investigated the influence of methionine M or T allele of the angiotensinogen and D or I allele of the angiotensin-converting enzyme on left-ventricular mass index (LVMI) and maximal aerobic capacity in young healthy individuals after long-term physical exercise training. Design Prospective clinical trial. Methods Eighty-three policemen aged between 20 and 35 years (mean +/- SD 26 +/- 4.5 years) were genotyped for the M235T gene angiotensinogen polymorphism (TT, n=25; MM/MT, n=58) and angiotensin-converting enzyme gene insertion/deletion (I/D) polymorphism (11, n=18; DD/DI, n=65). Left-ventricular morphology was evaluated by echocardiography and maximal aerobic capacity (VO(2peak)) by cardiopulmonary exercise test before and after 17 weeks of exercise training (50-80% VO(2peak)). Results Baseline VO(2peak) and LVMI were similar between TT and MM/MT groups, and II and DD/DI groups. Exercise training increased significantly and similarly VO(2peak) in homozygous TT and MM/MT individuals, and homozygous II and DD/DI individuals. In addition, exercise training increased significantly LVMI in TT and MM/MT individuals (76.5 +/- 3 vs. 86.7 +/- 4, P=0.00001 and 76.2 +/- 2 vs. 81.4 +/- 2, P=0.00001, respectively), and II and DD/DI individuals (777 +/- 4 vs. 81.5 +/- 4, P=0.0001 and 76 +/- 2 vs. 83.5 +/- 2, P=0.0001, respectively). However, LVMI I in TT individuals was significantly greater than in MM/MT individuals (P=0.04). LVMI was not different between 11 and DD/DI individuals. Conclusion Left-ventricular hypertrophy caused by exercise training is exacerbated in homozygous TT individuals with angiotensinogen polymorphism. Eur J Cardiovasc Prev Rehabil 16:487-492 (C) 2009 The European Society of Cardiology
Resumo:
The anatomy of the crocodilian heart and major arteries has fascinated people for a very long time. The first scientific paper seems to be that by the Italian anatomist Bartolomeo Panizza in 1833 who wrote about the structure of the heart and the circulation of the blood in /Crocodilys lucius/, an early name for the American Alligator. Since 1833 there have been many papers and the crocodilian heart has attracted the attention of generation after generation of anatomists and physiologists with ever-increasingly sophisticated investigatory techniques being applied to questions about the functional significance of the puzzlingly complex anatomy.
Resumo:
Some blockers of beta(1)- and beta(2)-adrenoceptors cause cardiostimulant effects through an atypical beta-adrenoceptor (putative beta(4)-adrenoceptor) that resembles the beta(3)-adrenoceptor. It is likely but not proven that the putative beta(4)-adrenoceptor is genetically distinct from the beta(3)-adrenoceptor. We therefore investigated whether or not the cardiac atypical beta-adrenoceptor could mediate agonist effects in mice lacking a functional beta(3)-adrenoceptor gene (beta(3)KO). (-)-CGP 12177, a beta(1)- and beta(2)-adrenoceptor blocker that causes agonist effects through both beta(3)-adrenoceptors and cardiac putative beta(4)-adrenoceptors, caused cardiostimulant effects that were not different in atria from wild-type (WT) mice and beta(3)KO mice. The effects of (-)-CGP 12177 were resistant to blockade by (-)-propranolol (200 nM) but were blocked by (-)-bupranolol (1 mu M) with an equilibrium dissociation constant of 15 nM in WT and 17 nM in beta(3)KO. (-)-[H-3]CGP 12177 labeled a similar density of the putative beta(4)-adrenoceptor in ventricular membranes from the hearts of both WT (B-max = 52 fmol/mg protein) and beta(3)KO (B-max = 53 fmol/mg protein) mice. The affinity of (-)-[H-3]CGP 12177 for the cardiac putative beta(4)-adrenoceptor was not different between WT (K-d = 46 nM) and beta(3)KO (K-d = 40 nM). These results provide definitive evidence that the cardiac putative beta(4)-adrenoceptor is distinct from the beta(3)-adrenoceptor.
Resumo:
1 Voltage-operated calcium channel (VOCC) antagonists are effective antihypertensive and antianginal agents but they also depress myocardial contractility. 2 We compared four L-type calcium channel antagonists, felodipine, nifedipine, amlodipine and verapamil and a relatively T-type selective calcium channel antagonist, mibefradil, on human and rat isolated tissue assays to determine their functional vascular to cardiac tissue selectivity (V/C) ratio. 3 The V/C ratio was calculated as the ratio of the IC50 value of the antagonist that reduced (by 50%) submaximally contracted (K+ 62 mM) human small arteries from the aortic vasa vasorum (vascular, V) mounted in a myograph and the IC50 value of the antagonist that reduced (-)-isoprenaline (6 nM) submaximally stimulated human right atrial trabeculae muscle (cardiac, C) mounted in organ chambers. 4 The average pIC(50) Values (-log IC50 M) for the human vascular preparations were felodipine 8.30, nifedipine 7.78, amlodipine 6.64, verapamil 6.26 and mibefradil 6.22. The average pIC(50) values for the cardiac muscle were felodipine 7.21, nifedipine 6.95, verapamil 6.91, amlodipine 5.94, and mibefradil 4.61. 5 The V/C ratio calculated as antilog [pIC(50)V-pIC(50)C] is thus mibefradil 41, felodipine 12, nifedipine 7, amlodipine 5 and verapamil 0.2. 6 In rat small mesenteric arteries the pIC(50) values for the five drugs were similar to the values for human vasa vasorum arteries contracted by K+ 62 mM. However for methoxamine (10 mu M) contraction in the rat arteries the pIC(50) values were lower for felodipine 7.24 and nifedipine 6.23, but similar for verapamil 6.13, amlodipine 6.28 and mibefradil 5.91. 7 In conclusion in the human tissue assays, the putative T-channel antagonist mibefradil shows the highest vascular to cardiac selectivity ratio; some 3 fold higher than the dihydropyridine, felodipine, and some 200 fold more vascular selective than the phenylalkylamine, verapamil. This favourable vascular to cardiac selectivity for mibefradil, from a new chemical class of VOCC antagonist, may be explained by its putative T-channel selectivity.
Resumo:
Background. Human aortic valve allografts elicit a cellular and humoral immune response. It is not clear whether this is important in promoting valve damage. We investigated the changes in morphology, cell populations, and major histocompatibility complex antigen distribution in the rat aortic valve allograft. Methods. Fresh heart valves from Lewis rats were transplanted into the abdominal aorta of DA rats. Valves from allografted, isografted, and presensitized recipient rats were examined serially with standard morphologic and immunohistochemical techniques. Results. In comparison with isografts, the allografts were infiltrated and thickened by increased numbers of CD4(+) and CD8(+) lymphocytes, macrophages, and fibroblasts. Thickening of the valve wall and leaflet and the density of the cellular infiltrate was particularly evident after presensitization. Endothelial cells were frequently absent in presensitized allografts whereas isografts had intact endothelium. Cellular major histocompatibility complex class I and II antigens in the allograft were substantially increased. A long-term allograft showed dense fibrosis and disruption of the media with scattered persisting donor cells. Conclusions. The changes in these aortic valve allograft experiments are consistent with an allograft immune response and confirm that the response can damage aortic valve allograft tissue. (C) 1998 by The Society of Thoracic Surgeons.
Resumo:
The purpose of these experiments was to examine the effects of dietary antioxidant supplementation with vitamin E (VE) and alpha -lipoic acid (alpha -LA) on biochemical and physiological responses to in vivo myocardial ischemia-reperfusion (I-R) in aged rats. Male Fischer-334 rats (18 mo old) were assigned to either 1) a control diet (CON) or 2) a VE and alpha -LA supplemented diet (ANTIOX). After a 14-wk feeding period, animals in each group underwent an in vivo I-R protocol (25 min of myocardial ischemia and 15 min of reperfusion). During reperfusion, peak arterial pressure was significantly higher (P < 0.05) in ANTIOX animals compared with CON diet animals. I-R resulted in a significant increase (P < 0.05) in myocardial lipid peroxidation in CON diet animals but not in ANTIOX animals. Compared with ANTIOX animals, heart homogenates from CON animals experienced significantly less (P < 0.05) oxidative damage when exposed to five different in vitro radical producing systems. These data indicate that dietary supplementation with VE and -LA protects the aged rat heart from I-R-induced lipid peroxidation by scavenging numerous reactive oxygen species. Importantly, this protection is associated with improved cardiac performance during reperfusion.
Resumo:
1. Classical L-type voltage-operated calcium channel (VOCC) antagonists dilate blood vessels, depress myocardial contractility and slow cardiac conduction. 2. We compared four L-type VOCC antagonists and a novel tetralol derivative, mibefradil, reportedly 10-fold more selective for T- (transient) over L-type VOCC in two in vitro assays of human tissue, namely isolated small arteries from the aortic vasa vasorum in a myograph and right atrial trabeculae muscle under isometric force conditions. 3. In arteries contracted with K+ (62 mmol/L), the relaxation pIC(50) values for the VOCC antagonists felodipine, nifedipine, amlodipine, verapamil and mibefradil were 8.30, 7.78, 6.64, 6.26 and 6.22, respectively. In atrial trabeculae, the pIC(50) values to inhibit the inotropic response to a submaximal concentration of isoprenaline (6 nmol/L) for felodipine, nifedipine, verapamil, amlodipine and mibefradil were 7.21, 6.95, 6.91, 5.94 and 4.61, respectively. 4. Taking the anti-log (pIC(50) vessel - pIC(50) atrium) the vascular relaxation to cardiac depression potency ratios for mibefradil, felodipine, nifedipine, amlodipine and verapamil were 41, 12, 7, 5 and 0.22, respectively. 5. We conclude that, in human tissue assays, perhaps T- over L-type VOCC selectivity confers the most favourable vascular selectivity on mibefradil. Alternatively, splice variants of L-type VOCC in the vasculature (CaV1.2b) may be more sensitive to mibefradil than the splice variants in the heart (CaV1.2a).
Resumo:
Background and aim of the study: Results of valve re-replacement (reoperation) in 898 patients undergoing aortic valve replacement with cryopreserved homograft valves between 1975 and 1998 are reported. The study aim was to provide estimates of unconditional probability of valve reoperation and cumulative incidence function (actual risk) of reoperation. Methods: Valves were implanted by subcoronary insertion (n = 500), inclusion cylinder (n = 46), and aortic root replacement (n = 352). Probability of reoperation was estimated by adopting a mixture model framework within which estimates were adjusted for two risk factors: patient age at initial replacement, and implantation technique. Results: For a patient aged 50 years, the probability of reoperation in his/her lifetime was estimated as 44% and 56% for non-root and root replacement techniques, respectively. For a patient aged 70 years, estimated probability of reoperation was 16% and 25%, respectively. Given that a reoperation is required, patients with non-root replacement have a higher hazard rate than those with root replacement (hazards ratio = 1.4), indicating that non-root replacement patients tend to undergo reoperation earlier before death than root replacement patients. Conclusion: Younger patient age and root versus non-root replacement are risk factors for reoperation. Valve durability is much less in younger patients, while root replacement patients appear more likely to live longer and hence are more likely to require reoperation.