999 resultados para Cardiac regeneration
Resumo:
Background The allele threonine (T) of the angiotensinogen has been associated with ventricular hypertrophy in hypertensive patients and soccer players. However, the long-term effect of physical exercise in healthy athletes carrying the T allele remains unknown. We investigated the influence of methionine M or T allele of the angiotensinogen and D or I allele of the angiotensin-converting enzyme on left-ventricular mass index (LVMI) and maximal aerobic capacity in young healthy individuals after long-term physical exercise training. Design Prospective clinical trial. Methods Eighty-three policemen aged between 20 and 35 years (mean +/- SD 26 +/- 4.5 years) were genotyped for the M235T gene angiotensinogen polymorphism (TT, n=25; MM/MT, n=58) and angiotensin-converting enzyme gene insertion/deletion (I/D) polymorphism (11, n=18; DD/DI, n=65). Left-ventricular morphology was evaluated by echocardiography and maximal aerobic capacity (VO(2peak)) by cardiopulmonary exercise test before and after 17 weeks of exercise training (50-80% VO(2peak)). Results Baseline VO(2peak) and LVMI were similar between TT and MM/MT groups, and II and DD/DI groups. Exercise training increased significantly and similarly VO(2peak) in homozygous TT and MM/MT individuals, and homozygous II and DD/DI individuals. In addition, exercise training increased significantly LVMI in TT and MM/MT individuals (76.5 +/- 3 vs. 86.7 +/- 4, P=0.00001 and 76.2 +/- 2 vs. 81.4 +/- 2, P=0.00001, respectively), and II and DD/DI individuals (777 +/- 4 vs. 81.5 +/- 4, P=0.0001 and 76 +/- 2 vs. 83.5 +/- 2, P=0.0001, respectively). However, LVMI I in TT individuals was significantly greater than in MM/MT individuals (P=0.04). LVMI was not different between 11 and DD/DI individuals. Conclusion Left-ventricular hypertrophy caused by exercise training is exacerbated in homozygous TT individuals with angiotensinogen polymorphism. Eur J Cardiovasc Prev Rehabil 16:487-492 (C) 2009 The European Society of Cardiology
Resumo:
This work aims to study the adsorption of phenol on activated carbons (ACs) and the consecutive in situ regeneration of carbon by Fenton oxidation. Two different operations have been carried Out: (1) a batch procedure in order to investigate the influence of Fe(2+) and H(2)O(2) concentrations; (2) continuous fixed bed adsorption, followed by a batch circulation of the Fenton`s reagent through the saturated AC bed. to examine the efficiency of the real process. Two different activated carbons have been also studied: a both micro- and mesoporous AC (L27) and an only microporous One (S23). In the batch reactor the best conditions found for pollutant mineralization in the homogeneous Fenton system are not the best For AC regeneration: a continuous reduction of adsorption capacity of L27 is observed after 3 oxidations, due to the decrease of both AC weight and surface area. Higher concentration of Fe(2+) and lower concentration of H(2)O(2) (2 times the stoichiometry) lead to a 50% recovery of the initial adsorption capacity during at least four consecutive cycles for L27, while about 20% or less for S23. In the consecutive continuous adsorption/batch Fenton oxidation process, the regeneration efficiency reaches 30-40% for L27 after two cycles whatever the feed concentration and less than 10% for S23. A photo-Fenton test performed on L27 shows almost complete mineralization (contrary to ""dark"" Fenton) and further improves recovery of AC adsorption capacity although not complete (56% after two cycles).
Resumo:
The present study describes the direct regeneration of protocorm-like bodies (PLBs) in leaf explants of the tropical species Oncidium flexuosum. The explants were inoculated in a solid, modified Murashige and Skoog (MS) medium with different concentrations of the growth regulator thidiazuron (TDZ) and with or without 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene acetic acid (NAA), and kept away from light or in a 16-h photoperiod. The presence of auxins, 2,4-D, and NAA inhibited the formation of PLBs. The highest frequency of explants that regenerated PLBs (80%) was obtained when they were maintained in a culture medium containing 1.5 mu M TDZ under dark conditions. In the same culture medium but under a 16-h photoperiod, 95% of the leaf explants presented necrosis. Therefore, darkness was crucial for the regeneration of PLBs in O. flexuosum leaf explants, which is in disagreement with the literature. PLBs developed from the division of epidermal and subepidermal cells mainly on the adaxial side of the apex region of the explant. Plants with well-developed leaves and roots grew after the PLBs were transferred to growth regulator-free medium under a 16-h photoperiod.
Resumo:
This study aimed at characterizing the potential for natural regeneration of native vegetation in the under-story of an earlier Eucalyptus saligna Smith production stand. The study was carried out at the Parque das Neblinas, Bertioga municipality, SP, in a 45 ha third rotation stand; which had been abandoned 15 years ago for natural regeneration to occur. The sampling was done in 24 plots of 20 x 40 m. The sampled area was of 19,200 m(2), with inventory made of 100% of the eucalyptus trees. All regeneration trees with a height >= 1.30 m and DBH >= 5.0 cm were measured, as well as adult individuals with DBH >= 5.0 cm; surveyed in two size classes. 1,417 individuals of E. saligna were measured, with a density of 738,02 individuals/ha and a basal area of 22.69 m(2)/ha. Among 2,763 natural regeneration individuals, 111 species belonged to 66 genera and 34 botanical families. The species represented 43.7% of the tree richness of neighboring native forest fragments. The total estimated density and the basal area were respectively 1,052.6 individuals/ha and 6.4 m(2)/ha of autochthonous trees with DBH >= 5.0 cm (Class 1); while for regeneration there were 3,864.58 individuals/ha, and 2.76 m(2)/ha of individuals with a height >= 1.30 m and DBH <5.0 cm (Class 2). Shannon diversity (H`) was 2.83 and 3.68, respectively, for Classes 1 and 2, and the corrected species richness for a 1000-individual sample (R(1000)) were 75.6 and 87.29 (Fisher`s a index) for the same classes. The majority of the species (34.84%) was typical from the understory of wet tropical forest and had zoochoric fruit dispersal (67.57%). The results indicate that, under these conditions, a eucalyptus forest is able to provide adequate regeneration niches for native vegetation, and may represent a sink habitat for local populations.
Resumo:
This study reports the effects of dietary iron (Fe) deficiency and recovery on bone mineral composition and strength in anemic rats submitted to a hemoglobin (Hb) repletion assay. Weanling male Wistar rats were fed a low-Fe diet (12 mg/kg) for 15 days followed by 2 weeks of Fe repletion with diets providing 35 mg Fe/kg as either ferrous sulfate (n = 8) or ferric pyrophosphate (FP; n = 12). At final day of each period (depletion and repletion), Fe-adequate animals were also euthanized. Iron status (blood Hb, Hb Fe pool, Hb regeneration efficiency), tibia mineral concentrations (Ca, Mg, Fe, Cu, and Zn) and biomechanical properties were evaluated. Iron-deficient rats had lower tibia Fe and Mg levels and bone strength when compared to controls. Yield load and resilience were positively related to tibia Mg levels (r = 0.47, P = 0.02 and r = 0.56, P = 0.004, respectively). Iron repletion did not recover tibia Mg concentrations impaired by Fe deficiency. Moreover, bone elastic properties were negatively affected by FP consumption. In conclusion, bone mineral composition and strength were affected by Fe deficiency, whereas dietary Fe source influenced tibia Mg and resistance in the period during which rats were recovering from anemia.
Resumo:
Galectin-1 (Gal-1) is important in immune function and muscle regeneration, but its expression and localization in adult tissues and primary leukocytes remain unclear. To address this, we generated a specific monoclonal antibody against Gal-1, termed alpha hGal-1, and defined a sequential peptide epitope that it recognizes, which is preserved in human and porcine Gal-1, but not in murine Gal-1. Using alpha hGal-1, we found that Gal-1 is expressed in a wide range of porcine tissues, including striated muscle, liver, lung, brain, kidney, spleen, and intestine. In most types of cells, Gal-1 exhibits diffuse cytosolic expression, but in cells within the splenic red pulp, Gal-1 showed both cytosolic and nuclear localization. Gal-1 was also expressed in arterial walls and exhibited prominent cytosolic and nuclear staining in cultured human endothelial cells. However, human peripheral leukocytes and promyelocytic HL60 cells lack detectable Gal-1 and also showed very low levels of Gal-1 mRNA. In striking contrast, Gal-1 exhibited an organized cytosolic staining pattern within striated muscle tissue of cardiac and skeletal muscle and colocalized with sarcomeric actin on I bands. These results provide insights into previously defined roles for Gal-1 in inflammation, immune regulation and muscle biology.
Resumo:
The anatomy of the crocodilian heart and major arteries has fascinated people for a very long time. The first scientific paper seems to be that by the Italian anatomist Bartolomeo Panizza in 1833 who wrote about the structure of the heart and the circulation of the blood in /Crocodilys lucius/, an early name for the American Alligator. Since 1833 there have been many papers and the crocodilian heart has attracted the attention of generation after generation of anatomists and physiologists with ever-increasingly sophisticated investigatory techniques being applied to questions about the functional significance of the puzzlingly complex anatomy.
Resumo:
Some blockers of beta(1)- and beta(2)-adrenoceptors cause cardiostimulant effects through an atypical beta-adrenoceptor (putative beta(4)-adrenoceptor) that resembles the beta(3)-adrenoceptor. It is likely but not proven that the putative beta(4)-adrenoceptor is genetically distinct from the beta(3)-adrenoceptor. We therefore investigated whether or not the cardiac atypical beta-adrenoceptor could mediate agonist effects in mice lacking a functional beta(3)-adrenoceptor gene (beta(3)KO). (-)-CGP 12177, a beta(1)- and beta(2)-adrenoceptor blocker that causes agonist effects through both beta(3)-adrenoceptors and cardiac putative beta(4)-adrenoceptors, caused cardiostimulant effects that were not different in atria from wild-type (WT) mice and beta(3)KO mice. The effects of (-)-CGP 12177 were resistant to blockade by (-)-propranolol (200 nM) but were blocked by (-)-bupranolol (1 mu M) with an equilibrium dissociation constant of 15 nM in WT and 17 nM in beta(3)KO. (-)-[H-3]CGP 12177 labeled a similar density of the putative beta(4)-adrenoceptor in ventricular membranes from the hearts of both WT (B-max = 52 fmol/mg protein) and beta(3)KO (B-max = 53 fmol/mg protein) mice. The affinity of (-)-[H-3]CGP 12177 for the cardiac putative beta(4)-adrenoceptor was not different between WT (K-d = 46 nM) and beta(3)KO (K-d = 40 nM). These results provide definitive evidence that the cardiac putative beta(4)-adrenoceptor is distinct from the beta(3)-adrenoceptor.
Resumo:
Background/Aims: Liver clearance models are based on information (or assumptions) on solute distribution kinetics within the microvasculatory system, The aim was to study albumin distribution kinetics in regenerated livers and in livers of normal adult rats, Methods: A novel mathematical model was used to evaluate the distribution space and the transit time dispersion of albumin in livers following regeneration after a two-thirds hepatectomy compared to livers of normal adult rats. Outflow curves of albumin measured after bolus injection in single-pass perfused rat livers were analyzed by correcting for the influence of catheters and fitting a long-tailed function to the data. Results: The curves were well described by the proposed model. The distribution volume and the transit time dispersion of albumin observed in the partial hepatectomy group were not significantly different from livers of normal adult rats. Conclusions: These findings suggest that the distribution space and the transit time dispersion of albumin (CV2) is relatively constant irrespective of the presence of rapid and extensive repair. This invariance of CV2 implies, as a first approximation, a similar degree of intrasinusoidal mixing, The finding that a sum of two (instead of one) inverse Gaussian densities is an appropriate empirical function to describe the outflow curve of vascular indicators has consequences for an improved prediction of hepatic solute extraction.
Resumo:
1 Voltage-operated calcium channel (VOCC) antagonists are effective antihypertensive and antianginal agents but they also depress myocardial contractility. 2 We compared four L-type calcium channel antagonists, felodipine, nifedipine, amlodipine and verapamil and a relatively T-type selective calcium channel antagonist, mibefradil, on human and rat isolated tissue assays to determine their functional vascular to cardiac tissue selectivity (V/C) ratio. 3 The V/C ratio was calculated as the ratio of the IC50 value of the antagonist that reduced (by 50%) submaximally contracted (K+ 62 mM) human small arteries from the aortic vasa vasorum (vascular, V) mounted in a myograph and the IC50 value of the antagonist that reduced (-)-isoprenaline (6 nM) submaximally stimulated human right atrial trabeculae muscle (cardiac, C) mounted in organ chambers. 4 The average pIC(50) Values (-log IC50 M) for the human vascular preparations were felodipine 8.30, nifedipine 7.78, amlodipine 6.64, verapamil 6.26 and mibefradil 6.22. The average pIC(50) values for the cardiac muscle were felodipine 7.21, nifedipine 6.95, verapamil 6.91, amlodipine 5.94, and mibefradil 4.61. 5 The V/C ratio calculated as antilog [pIC(50)V-pIC(50)C] is thus mibefradil 41, felodipine 12, nifedipine 7, amlodipine 5 and verapamil 0.2. 6 In rat small mesenteric arteries the pIC(50) values for the five drugs were similar to the values for human vasa vasorum arteries contracted by K+ 62 mM. However for methoxamine (10 mu M) contraction in the rat arteries the pIC(50) values were lower for felodipine 7.24 and nifedipine 6.23, but similar for verapamil 6.13, amlodipine 6.28 and mibefradil 5.91. 7 In conclusion in the human tissue assays, the putative T-channel antagonist mibefradil shows the highest vascular to cardiac selectivity ratio; some 3 fold higher than the dihydropyridine, felodipine, and some 200 fold more vascular selective than the phenylalkylamine, verapamil. This favourable vascular to cardiac selectivity for mibefradil, from a new chemical class of VOCC antagonist, may be explained by its putative T-channel selectivity.
Resumo:
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm(2) embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T-1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).
Resumo:
The purpose of these experiments was to examine the effects of dietary antioxidant supplementation with vitamin E (VE) and alpha -lipoic acid (alpha -LA) on biochemical and physiological responses to in vivo myocardial ischemia-reperfusion (I-R) in aged rats. Male Fischer-334 rats (18 mo old) were assigned to either 1) a control diet (CON) or 2) a VE and alpha -LA supplemented diet (ANTIOX). After a 14-wk feeding period, animals in each group underwent an in vivo I-R protocol (25 min of myocardial ischemia and 15 min of reperfusion). During reperfusion, peak arterial pressure was significantly higher (P < 0.05) in ANTIOX animals compared with CON diet animals. I-R resulted in a significant increase (P < 0.05) in myocardial lipid peroxidation in CON diet animals but not in ANTIOX animals. Compared with ANTIOX animals, heart homogenates from CON animals experienced significantly less (P < 0.05) oxidative damage when exposed to five different in vitro radical producing systems. These data indicate that dietary supplementation with VE and -LA protects the aged rat heart from I-R-induced lipid peroxidation by scavenging numerous reactive oxygen species. Importantly, this protection is associated with improved cardiac performance during reperfusion.
Resumo:
1. Classical L-type voltage-operated calcium channel (VOCC) antagonists dilate blood vessels, depress myocardial contractility and slow cardiac conduction. 2. We compared four L-type VOCC antagonists and a novel tetralol derivative, mibefradil, reportedly 10-fold more selective for T- (transient) over L-type VOCC in two in vitro assays of human tissue, namely isolated small arteries from the aortic vasa vasorum in a myograph and right atrial trabeculae muscle under isometric force conditions. 3. In arteries contracted with K+ (62 mmol/L), the relaxation pIC(50) values for the VOCC antagonists felodipine, nifedipine, amlodipine, verapamil and mibefradil were 8.30, 7.78, 6.64, 6.26 and 6.22, respectively. In atrial trabeculae, the pIC(50) values to inhibit the inotropic response to a submaximal concentration of isoprenaline (6 nmol/L) for felodipine, nifedipine, verapamil, amlodipine and mibefradil were 7.21, 6.95, 6.91, 5.94 and 4.61, respectively. 4. Taking the anti-log (pIC(50) vessel - pIC(50) atrium) the vascular relaxation to cardiac depression potency ratios for mibefradil, felodipine, nifedipine, amlodipine and verapamil were 41, 12, 7, 5 and 0.22, respectively. 5. We conclude that, in human tissue assays, perhaps T- over L-type VOCC selectivity confers the most favourable vascular selectivity on mibefradil. Alternatively, splice variants of L-type VOCC in the vasculature (CaV1.2b) may be more sensitive to mibefradil than the splice variants in the heart (CaV1.2a).