999 resultados para Cardiac defects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vagus is clearly of primary importance in the regulation of reptilian cardiorespiratory systems. Vagal control of pulmonary blood flow and cardiac shunts provides reptiles with an additional means of regulating arterial oxygen levels that is not present in endothermic vertebrates (birds and mammals). Within a given species, there exists a clear correlation between withdrawal of vagal tone on the cardiovascular system and elevated metabolic rate. Undisturbed and resting reptiles are normally characterised by high vagal tone, low pulmonary blood flow and large right-left (R-L) cardiac shunts. The low oxygen levels that result from the large R-L shunt may serve to regulate metabolism. However, when metabolism is increased by temperature, exercise or digestion, the R-L cardiac shunt is reduced, which serves to increase oxygen delivery. This response is partially elicit ed by reduction of vagal tone. Interspecies comparisons reveal a similar pattern. Thus, species that are able to sustain the highest metabolic rates possess the highest degree of anatomical ventricular separation and, therefore, less cardiac shunting. It is interesting to note that when cardiac shunts occur in mammals, due for example to developmental defects, they are associated with reduced maximal metabolic rates and impaired exercise tolerance. It appears, therefore, that full separation of ventricular blood flows was a prerequisite for the evolution of high aerobic metabolic rates and exercise stamina in mammals and birds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Loss-of-function mutations in SCN5A, the gene encoding Na(v)1.5 Na+ channel, are associated with inherited cardiac conduction defects and Brugada syndrome, which both exhibit variable phenotypic penetrance of conduction defects. We investigated the mechanisms of this heterogeneity in a mouse model with heterozygous targeted disruption of Scn5a (Scn5a(+/-) mice) and compared our results to those obtained in patients with loss-of-function mutations in SCN5A. METHODOLOGY/PRINCIPAL FINDINGS: Based on ECG, 10-week-old Scn5a(+/-) mice were divided into 2 subgroups, one displaying severe ventricular conduction defects (QRS interval>18 ms) and one a mild phenotype (QRS< or = 18 ms; QRS in wild-type littermates: 10-18 ms). Phenotypic difference persisted with aging. At 10 weeks, the Na+ channel blocker ajmaline prolonged QRS interval similarly in both groups of Scn5a(+/-) mice. In contrast, in old mice (>53 weeks), ajmaline effect was larger in the severely affected subgroup. These data matched the clinical observations on patients with SCN5A loss-of-function mutations with either severe or mild conduction defects. Ventricular tachycardia developed in 5/10 old severely affected Scn5a(+/-) mice but not in mildly affected ones. Correspondingly, symptomatic SCN5A-mutated Brugada patients had more severe conduction defects than asymptomatic patients. Old severely affected Scn5a(+/-) mice but not mildly affected ones showed extensive cardiac fibrosis. Mildly affected Scn5a(+/-) mice had similar Na(v)1.5 mRNA but higher Na(v)1.5 protein expression, and moderately larger I(Na) current than severely affected Scn5a(+/-) mice. As a consequence, action potential upstroke velocity was more decreased in severely affected Scn5a(+/-) mice than in mildly affected ones. CONCLUSIONS: Scn5a(+/-) mice show similar phenotypic heterogeneity as SCN5A-mutated patients. In Scn5a(+/-) mice, phenotype severity correlates with wild-type Na(v)1.5 protein expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Channelopathies are diseases caused by dysfunctional ion channels, due to either genetic or acquired pathological factors. Inherited cardiac arrhythmic syndromes are among the most studied human disorders involving ion channels. Since seminal observations made in 1995, thousands of mutations have been found in many of the different genes that code for cardiac ion channel subunits and proteins that regulate the cardiac ion channels. The main phenotypes observed in patients carrying these mutations are congenital long QT syndrome (LQTS), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), short QT syndrome (SQTS) and variable types of conduction defects (CD). The goal of this review is to present an update of the main genetic and molecular mechanisms, as well as the associated phenotypes of cardiac channelopathies as of 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural abnormalities of the medial aorta have been described for conotruncal defects (e.g., tetralogy of Fallot [TOF] and complete transposition of the great arteries (dextrotransposition [d]-TGA). In TOF, progressive aortic dilation is a frequent finding. In patients with d-TGA with an atrial switch, this problem is less often described. The aim of the present study was to compare the extent of dilative aortopathy and aortic distensibility in adults with an atrial switch procedure (n = 39) to that in adults with repaired TOF (n = 39) and controls (n = 39), using cardiac magnetic resonance imaging. The groups were matched for age and gender. Diameters of the aorta indexed to the body surface area were significantly increased in the patients with d-TGA and TOF compared to that of the controls at the aortic sinus up to the level of the right pulmonary artery. On multivariate testing, the diagnosis of a conotruncal defect (β = 0.260; p = 0.003) and aortic regurgitant fraction (β = 0.405; p <0.001) were independent predictors of an increased aortic sinus diameter. Ascending aorta distensibility was significantly reduced in those with d-TGA and TOF compared to controls: 3.6 (interquartile range 1.5 to 4.4) versus 2.8 (interquartile range 2.0 to 3.7) versus 5.5 (interquartile range 4.8 to 6.9) ×10(-3) mm Hg(-1) (p <0.001). The independent predictors of ascending aorta distensibility were the diagnosis of a conotruncal defect (p <0.001) and age (p = 0.028). In conclusion, intrinsic aortopathy, manifested as increased ascending aortic diameters and reduced ascending aortic distensibility, is not only evident in adults with TOF, but also in adults with d-TGA and an atrial switch procedure. Long-term follow-up is needed to monitor the aortic size in both patient groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myocardial perfusion imaging with SPECT (SPECT-MPI) and 64-slice CT angiography (CTA) are both established techniques for the noninvasive evaluation of coronary artery disease (CAD). Three-dimensional (3D) SPECT/CT image fusion may offer an incremental diagnostic value by integrating both sets of information. We report our first clinical experiences with fused 3D SPECT/CT in CAD patients. METHODS: Thirty-eight consecutive patients with at least 1 perfusion defect on SPECT-MPI (1-d adenosine stress/rest SPECT with (99m)Tc-tetrofosmin) and 64-slice CTA were included. 3D volume-rendered fused SPECT/CT images were generated and compared with the findings from the side-by-side analysis with regard to coronary lesion interpretation by assigning the perfusion defects to their corresponding coronary lesion. RESULTS: The fused SPECT/CT images added information on pathophysiologic lesion severity in 27 coronary stenoses (22%) of 12 patients (29%) (P<0.001). Among 40 equivocal lesions on side-by-side analysis, the fused interpretation confirmed hemodynamic significance in 14 lesions and excluded functional relevance in 10 lesions. In 3 lesions, assignment of perfusion defect and coronary lesion appeared to be reliable on side-by-side analysis but proved to be inaccurate on fused interpretation. Added diagnostic information by SPECT/CT was more commonly found in patients with stenoses of small vessels (P=0.004) and involvement of diagonal branches (P=0.01). CONCLUSION: In addition to being intuitively convincing, 3D SPECT/CT fusion images in CAD may provide added diagnostic information on the functional relevance of coronary artery lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Newborns with hypoplastic left heart syndrome (HLHS) or right heart syndrome or other malformations with a single ventricle physiology and associated hypoplasia of the great arteries continue to be a challenge in terms of survival. The vast majority of these forms of congenital heart defects relate to abnormal morphogenesis during early intrauterine development and can be diagnosed accurately by fetal echocardiography. Early knowledge of these conditions not only permits a better understanding of the progression of these malformations but encourages some researchers to explore new minimally invasive therapeutic options with a view to early pre- and postnatal cardiac palliation. DATA SOURCES: PubMed database was searched with terms of "congenital heart defects", "fetal echocardiography" and "neonatal cardiac surgery". RESULTS: At present, early prenatal detection has been applied for monitoring pregnancy to avoid intrauterine cardiac decompensation. In principle, the majority of congenital heart defects can be diagnosed by prenatal echocardiography and the detection rate is 85%-95% at tertiary perinatal centers. The majority, particularly of complex congenital lesions, show a steadily progressive course including subsequent secondary phenomena such as arrhythmias or myocardial insufficiency. So prenatal treatment of an abnormal fetus is an area of perinatal medicine that is undergoing a very dynamic development. Early postnatal treatment is established for some time, and prenatal intervention or palliation is at its best experimental stage in individual cases. CONCLUSION: The upcoming expansion of fetal cardiac intervention to ameliorate critically progressive fetal lesions intensifies the need to address issues about the adequacy of technological assessment and patient selection as well as the morbidity of those who undergo these procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remarkable advances in ultrasound imaging technology have made it possible to diagnose fetal cardiovascular lesions as early as 12-14 weeks of gestation and to assess their physiological relevance by echocardiography. Moreover, invasive techniques have been developed and refined to relieve significant congenital heart disease (CHD), such as critical aortic and pulmonary stenoses in the pediatric population including neonates. Recognition of the fact that certain CHDs can evolve in utero, and early intervention may improve the outcome by altering the natural history of such conditions has led to the evolution of a new fetal therapy, i.e. fetal cardiac intervention. Two entities, pulmonary valvar atresia and intact ventricular septum (PA/IVS) and hypoplastic left heart syndrome (HLHS), are associated with significant morbidity and mortality even with postnatal surgical therapy. These cases are believed to occur due to restricted blood flow, leading to impaired growth and function of the right or left ventricle. Therefore, several centers started the approach of antenatal intervention with the primary goal of improving the blood flow through the stenotic/atretic valve orifices to allow growth of cardiac structures. Even though centers with a reasonable number of cases seem to have improved the technique and the immediate outcome of fetal interventions, the field is challenged by ethical issues as the intervention puts both the mother and the fetus at risk. Moreover, the perceived benefits of prenatal treatment have to be weighed against steadily improving postnatal surgical and hybrid procedures, which have been shown to reduce morbidity and mortality for these complex heart defects. This review is an attempt to provide a balanced opinion and an update on fetal cardiac intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Restrictive lung defects are associated with higher mortality in patients with acquired chronic heart failure. We investigated the prevalence of abnormal lung function, its relation to severity of underlying cardiac defect, its surgical history, and its impact on outcome across the spectrum of adult congenital heart disease. METHODS AND RESULTS: A total of 1188 patients with adult congenital heart disease (age, 33.1+/-13.1 years) undergoing lung function testing between 2000 and 2009 were included. Patients were classified according to the severity of lung dysfunction based on predicted values of forced vital capacity. Lung function was normal in 53% of patients with adult congenital heart disease, mildly impaired in 17%, and moderately to severely impaired in the remainder (30%). Moderate to severe impairment of lung function related to complexity of underlying cardiac defect, enlarged cardiothoracic ratio, previous thoracotomy/ies, body mass index, scoliosis, and diaphragm palsy. Over a median follow-up period of 6.7 years, 106 patients died. Moderate to severe impairment of lung function was an independent predictor of survival in this cohort. Patients with reduced force vital capacity of at least moderate severity had a 1.6-fold increased risk of death compared with patients with normal lung function (P=0.04). CONCLUSIONS: A reduced forced vital capacity is prevalent in patients with adult congenital heart disease; its severity relates to the complexity of the underlying heart defect, surgical history, and scoliosis. Moderate to severe impairment of lung function is an independent predictor of mortality in contemporary patients with adult congenital heart disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely accepted that hypoplastic left heart syndrome (HLHS), aortic valve stenosis with or without bicuspid aortic valve (AS/BAV) and coarctation of the aorta (CoA) occur in families more commonly with each other than with any other congenital heart defect (CHD). Genetic counseling for CHDs is currently based on empiric risk estimates derived from data collected on all types of CHDs between 1968 and 1990. Additionally, for the specific group of defects described above, termed left-sided lesions, estimates are available for sibling recurrence. Utilizing family history data from 757 probands recruited between 1997 and 2007 from The Children’s Hospital of Philadelphia, this study reassessed the pre/recurrence risks for LSLs specifically. Sibling pre/recurrence risks for HLHS (5.5%, 95% CI: 3.1%-8.9%), CoA (4.0%, 95% CI: 2.1%-6.7%), and AS/BAV (6.0%, 95% CI: 3.3%-9.8%) were higher than currently quoted risks based on sibling data for individual LSLs. Additionally, the prevalence of BAV in 202, apparently unaffected, parents of 134 probands was assessed by echocardiography. BAV, which occurs at a frequency of 1% in the general population, was found to occur in approximately 10% of parents of LSL probands. Lastly, among affected first-degree relative pairs (i.e. siblings, parent-offspring), the majority (65%-70%) were both affected with a LSL. Defect specific concordance rates were highest for AS/BAV. Together, these findings suggest that over the past 20 years with changing diagnostic capabilities and environmental/maternal conditions (e.g. folic acid fortification, increased maternal diabetes and obesity) recurrence risks may have increased, as compared to current LSL specific risk estimates. Based on these risk estimate increases and prior studies, a protocol for screening first-degree relatives of LSL probands should be devised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atrial septal defects (ASDs) are one of the most frequent congenital cardiac malformations, accounting for about 8-10% of all congenital heart defects. The prevalence of pulmonary arterial hypertension (PAH) in adults with an ASD is 8-10%. Different clinical PAH scenarios can be encountered. At one end of the spectrum are adults with no or only mild pulmonary vascular disease and a large shunt. These are patients who can safely undergo shunt closure. In the elderly, mild residual pulmonary hypertension after shunt closure is the rule. At the other end of the spectrum are adults with severe, irreversible pulmonary vascular disease, shunt reversal and chronic cyanosis, that is, Eisenmenger syndrome. These are patients who need to be managed medically. The challenge is to properly classify ASD patients with PAH falling in between the two ends of the spectrum as the ones with advanced, but reversible pulmonary vascular disease amenable to repair, versus the ones with progressive pulmonary vascular disease not responding to shunt closure. There are concerns that adults with progressive pulmonary vascular disease have worse outcomes after shunt closure than patients not undergoing shunt closure. Due to the correlation of pulmonary vascular changes and pulmonary hemodynamics, cardiac catheterization is used in the decision-making process. It is important to consider the hemodynamic data in the context of the clinical picture, the defect anatomy and further noninvasive tests when evaluating the option of shunt closure in these patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Striated preferentially expressed gene (Speg) is a member of the myosin light chain kinase family. We previously showed that disruption of the Speg gene locus in mice leads to a dilated cardiomyopathy with immature-appearing cardiomyocytes. Here we show that cardiomyopathy of Speg(-/-) mice arises as a consequence of defects in cardiac progenitor cell (CPC) function, and that neonatal cardiac dysfunction can be rescued by in utero injections of wild-type CPCs into Speg(-/-) foetal hearts. CPCs harvested from Speg(-/-) mice display defects in clone formation, growth and differentiation into cardiomyocytes in vitro, which are associated with cardiac dysfunction in vivo. In utero administration of wild-type CPCs into the hearts of Speg(-/-) mice results in CPC engraftment, differentiation and myocardial maturation, which rescues Speg(-/-) mice from neonatal heart failure and increases the number of live births by fivefold. We propose that in utero administration of CPCs may have future implications for treatment of neonatal heart diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE OF REVIEW Progressive cardiac conduction disorder (PCCD) is an inherited cardiac disease that may present as a primary electrical disease or be associated with structural heart disease. In this brief review, we present recent clinical, genetic, and molecular findings relating to PCCD. RECENT FINDINGS Inherited PCCD in structurally normal hearts has been found to be linked to genetic variants in the ion channel genes SCN5A, SCN1B, SCN10A, TRPM4, and KCNK17, as well as in genes coding for cardiac connexin proteins. In addition, several SCN5A mutations lead to 'cardiac sodium channelopathy overlap syndrome'. Other genes coding for cardiac transcription factors, such as NKX2.5 and TBX5, are involved in the development of the cardiac conduction system and in the morphogenesis of the heart. Mutations in these two genes have been shown to cause cardiac conduction disorders associated with various congenital heart defects. SUMMARY PCCD is a hereditary syndrome, and genetic variants in multiple genes have been described to date. Genetic screening and identification of the causal mutation are crucial for risk stratification and family counselling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heart is the first organ to form in vertebrates during embryogenesis, and its circulatory function is essential to embryonic survival. Cardiac morphogenesis comprises a complex series of interactions involving cells from several embryonic origins. These cell-cell interactions are regulated temporally and spatially by programs of inductive signaling events, including BMP signaling transduced by Smads and left-right asymmetry signaling mediated by Pitx2. Disruptions of BMP signaling and left-right asymmetry signaling result in abnormal cardiac morphogenesis that causes congenital heart disease in humans. In this study, conventional and conditional gene targeting approaches were employed to dissect the functions of Smad8 and Smad1, intracellular BMP signaling transducers, and Pitx2, a direct target of left-right signaling, in cardiac development. We generated the Smad8mt mutant allele and the Smad8lacZ knock-in allele. Smad8 homozygous mutant mice were viable and fertile without obvious abnormalities. The Smad8lacZ knock-in allele showed that Smad8 was expressed in the myocardium of cardiac outflow tract and atrioventricular cushions. We did not find defects in these Smad8-expressing cardiac regions in Smad8mt/mt and Smad8lacZ/lacZ mutants, indicating that Smad8 is dispensable for cardiac development. Conditional knockout of Smad1 using the Nkx2.5Cre allele in cardiac mesoderm resulted in partial inactivation of Smad1 in the myocardium and complete deletion of Smad1 in the epicardium, and caused ventricular hypoplasia featured with a thinner compact zone, suggesting that Smad1 signaling in the epicardium is required for myocardial morphogenesis in ventricles. Previous data have shown that Pitx2 null mutants exhibit defects in the cardiac outflow tract, a region populated with cells from the cardiac mesoderm and the cardiac neural crest. We found that the cardiac neural crest normally populated into the outflow tract in Pitx2 null mutant. Moreover, specific deletion of Pitx2 in the neural crest resulted in normal heart formation. Deletion of Pitx2 in the cardiac mesoderm caused defective outflow tract, revealing that the function of Pitx2 in the cardiac outflow tract resides in splanchnic and branchial arch mesoderm, and is independent of cardiac neural crest cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epithelial-mesenchymal tissue interactions regulate the development of derivatives of the caudal pharyngeal arches (PAs) to govern the ultimate morphogenesis of the aortic arch and outflow tract (OFT) of the heart. Disruption of these signaling pathways is thought to contribute to the pathology of a significant proportion of congenital cardiovascular defects in humans. In this study, I tested whether Fibroblast Growth Factor 15 (Fgf15), a secreted signaling molecule expressed within the PAs, is an extracellular mediator of tissue interactions during PA and OFT development. Analyses of Fgf15−/− mouse embryonic hearts revealed abnormalities primarily localized to the OFT, correlating with aberrant cardiac neural crest cell behavior. The T-box-containing transcription factor Tbx1 has been implicated in the cardiovascular defects associated with the human 22q11 Deletion Syndromes, and regulates the expression of other Fgf family members within the mouse PAs. However, expression and genetic interaction studies incorporating mice deficient for Tbx1, its upstream regulator, Sonic Hedgehog (Shh), or its putative downstream effector, Fgf8, indicated that Fgf15 functions during OFT development in a manner independent of these factors. Rather, analyses of compound mutant mice indicated that Fgf15 and Fgf9, an additional Fgf family member expressed within the PAs, genetically interact, providing insight into the factors acting in conjunction with Fgf15 during OFT development. Finally, in an effort to further characterize this Fgf15-mediated developmental pathway, promoter deletion analyses were employed to isolate a 415bp sequence 7.1Kb 5′ to the Fgf15 transcription start site both necessary and sufficient to drive reporter gene expression within the epithelium of the PAs. Sequence comparisons among multiple mammalian species facilitated the identification of evolutionarily conserved potential trans-acting factor binding sites within this fragment. Subsequent studies will investigate the molecular pathway(s) through which Fgf15 functions via identification of factors that bind to this element to govern Fgf15 gene expression. Furthermore, targeted deletion of this element will establish the developmental requirement for pharyngeal epithelium-derived Fgf15 signaling function. Taken as a whole, these data demonstrate that Fgf15 is a component of a novel, Tbx1-independent molecular pathway, functioning within the PAs in a manner cooperative with Fgf9, required for proper development of the cardiac OFT. ^