922 resultados para Carbon-Carbon composites


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrical resistivity of carbon fiber reinforced cement composites (CFRCCs) has been widely studied, because of their utility as multifunctional materials. The percolation phenomenon has also been reported and modeled when the electrical behavior of those materials had to be characterized. Amongst the multiple applications of multifunctional cement composites the ability of a CFRCC to act as a strain sensor is attractive. This paper provides experimental data relating self-sensing function and percolation threshold, and studying the effect of fiber aspect ratio on both phenomena. Higher fiber slenderness permitted percolation at lower carbon fiber addition, affected mechanical properties and improved strain-sensing sensitivity of CFRCC, which was also improved if percolation had not been achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work focuses on the preparation of flexible ruthenium oxide containing activated carbon cloth by electrodeposition. Different electrodeposition methods have been used, including chronoamperometry, chronopotentiometry and cyclic voltammetry. The electrochemical properties of the obtained materials have been measured. The results show that the potentiostatic method allows preparing composites with higher specific capacitance than the pristine activated carbon cloth. The capacitance values measured by cyclic voltammetry at 10 mV s−1 and 1 V of potential window were up to 160 and 180 F g−1. This means an improvement of 82% and 100% with respect to the capacitance of the pristine activated carbon cloth. This excellent capacitance enhancement is attributed to the small particle size (4–5 nm) and the three-dimensional nanoporous network of the ruthenium oxide film which allows reaching very high degree of oxide utilization without blocking the pore structure of the activated carbon cloth. In addition, the electrodes maintain the mechanical properties of the carbon cloth and can be useful for flexible devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work reports the synthesis of nanoTiC–graphite composites using mesophase pitch containing titanium as TiC or TiO2 nanoparticles. NanoTiC–graphite composites have been prepared using Ti-doped self-sintering mesophase powders as starting materials without using any binders or a metal carbide-carbon mixing stage. The effect of manufacture variables on the graphite compacts properties was studied. Graphites were characterised using XRD and Raman spectroscopy, SEM and TEM, as well as by their mechanical, electrical and thermal properties. The presence of TiC promotes graphitisation producing materials with larger crystal sizes. The kind of titanium source and mesophase content of the starting pitch affects to the final properties. Mesophase pitch with higher amount of mesophase content produces graphites with higher degree of graphitisation. The incorporation of TiC nanoparticles to the graphites composites improved thermal conductivity more than four times, and mechanical properties are not significantly modified by the presence of TiC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyethylene (PE) multiwalled carbon nanotubes (MWCNTs) with weight fractions ranging from 0.1 to 10 wt% were prepared by melt blending using a mini-twin screw extruder. The morphology and degree of dispersion of the MWCNTs in the PE matrix at different length scales was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and wide-angle X-ray diffraction (WAXD). Both individual and agglomerations of MWCNTs were evident. An up-shift of 17 cm(-1) for the G band and the evolution of a shoulder to this peak were obtained in the Raman spectra of the nanocomposites, probably due to compressive forces exerted on the MWCNTs by PE chains and indicating intercalation of PE into the MWCNT bundles. The electrical conductivity and linear viscoelastic behaviour of these nanocomposites were investigated. A percolation threshold of about 7.5 wt% was obtained and the electrical conductivity of PE was increased significantly, by 16 orders of magnitude, from 10(-20) to 10(-4) S/cm. The storage modulus (G') versus frequency curves approached a plateau above the percolation threshold with the formation of an interconnected nanotube structure, indicative of 'pseudo-solid-like' behaviour. The ultimate tensile strength and elongation at break of the nanocomposites decreased with addition of MWCNTs. The diminution of mechanical proper-ties of the nanocomposites, though concomitant with a significant increase in electrical conductivity, implies the mechanism for mechanical reinforcement for PE/MWCNT composites is filler-matrix interfacial interactions and not filler percolation. The temperature of crystallisation (T.) and fraction of PE that was crystalline (F-c) were modified by incorporating MWCNTs. The thermal decomposition temperature of PE was enhanced by 20 K on addition of 10 wt% MWCNT. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon nanotube polycarbonate composites with controlled nanotube-bundle size are prepared by dispersion with conjugated polymers followed by blending with polycarbonate. The composite has uniform sub-micrometer nanotube bundles in high concentration, shows strong nonlinear optical absorption, and generates 193 fs pulses when used as passive mode-locker in a fiber laser.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Luminescent carbon dots (L-CDs) with high quantum yield value (44.7%) and controllable emission wavelengths were prepared via a facile hydrothermal method. Importantly, the surface states of the materials could be engineered so that their photoluminescence was either excitation-dependent or distinctly independent. This was achieved by changing the density of amino-groups on the L-CD surface. The above materials were successfully used to prepare multicolor L-CDs/polymer composites, which exhibited blue, green, and even white luminescence. In addition, the excellent excitation-independent luminescence of L-CDs prepared at low temperature was tested for detecting various metal ions. As an example, the detection limit of toxic Be2+ ions, tested for the first time, was as low as μM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al 4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combining intrinsically conducting polymers with carbon nanotubes (CNT) helps in creating composites with superior electrical and thermal characteristics. These composites are capable of replacing metals and semiconductors as they possess unique combination of electrical conductivity, flexibility, stretchability, softness and bio-compatibility. Their potential for use in various organic devices such as super capacitors, printable conductors, optoelectronic devices, sensors, actuators, electrochemical devices, electromagnetic interference shielding, field effect transistors, LEDs, thermoelectrics etc. makes them excellent substitutes for present day semiconductors.However, many of these potential applications have not been fully exploited because of various open–ended challenges. Composites meant for use in organic devices require highly stable conductivity for the longevity of the devices. CNT when incorporated at specific proportions, and with special methods contributes quite positively to this end.The increasing demand for energy and depleting fossil fuel reserves has broadened the scope for research into alternative energy sources. A unique and efficient method for harnessing energy is thermoelectric energy conversion method. Here, heat is converted directly into electricity using a class of materials known as thermoelectric materials. Though polymers have low electrical conductivity and thermo power, their low thermal conductivity favours use as a thermoelectric material. The thermally disconnected, but electrically connected carrier pathways in CNT/Polymer composites can satisfy the so-called “phonon-glass/electron-crystal” property required for thermoelectric materials. Strain sensing is commonly used for monitoring in engineering, medicine, space or ocean research. Polymeric composites are ideal candidates for the manufacture of strain sensors. Conducting elastomeric composites containing CNT are widely used for this application. These CNT/Polymer composites offer resistance change over a large strain range due to the low Young‟s modulus and higher elasticity. They are also capable of covering surfaces with arbitrary curvatures.Due to the high operating frequency and bandwidth of electronic equipments electromagnetic interference (EMI) has attained the tag of an „environmental pollutant‟, affecting other electronic devices as well as living organisms. Among the EMI shielding materials, polymer composites based on carbon nanotubes show great promise. High strength and stiffness, extremely high aspect ratio, and good electrical conductivity of CNT make it a filler of choice for shielding applications. A method for better dispersion, orientation and connectivity of the CNT in polymer matrix is required to enhance conductivity and EMI shielding. This thesis presents a detailed study on the synthesis of functionalised multiwalled carbon nanotube/polyaniline composites and their application in electronic devices. The major areas focused include DC conductivity retention at high temperature, thermoelectric, strain sensing and electromagnetic interference shielding properties, thermogravimetric, dynamic mechanical and tensile analysis in addition to structural and morphological studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, many tidal turbine projects have been developed using composites blades. Tidal turbine blades are subject to ocean forces and sea water aggressions, and the reliability of these components is crucial to the profitability of ocean energy recovery systems. The majority of tidal turbine developers have preferred carbon/epoxy blades, so there is a need to understand how prolonged immersion in the ocean affects these composites. In this study the long term behaviour of different carbon/epoxy composites has been studied using accelerated ageing tests. A significant reduction of composite strengths has been observed after saturation of water in the material. For longer immersions only small further changes in these properties occur. No significant changes have been observed for moduli nor for composite toughness. The effect of sea water ageing on damage thresholds and kinetics has been studied and modelled. After saturation, the damage threshold is modified while kinetics of damage development remain the same.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work, the electron field emission behaviour of electrodes formed by carbon nanotubes (CNTs) grown onto monolithic vitreous carbon (VCarbon) substrates with microcavities is presented. Scanning electron microscopy was used to characterize the microstructure of the films. Tungsten probes, stainless steel sphere, and phosphor electrodes were employed in the electron field emission study. The CNT/VCarbon composite represents a route to inexpensive excellent large area electron emission cathodes with fields as low as 2.1 V mu m(-1). In preliminary lifetime tests for a period of about 24 h at an emission current of about 4 mA cm(-2), there is an onset degradation of the emission current of about 28%, which then stabilizes. Electron emission images of the composites show the cavity of the samples act as separate emission sites and predominantly control the emission process. The emission of CNTs/VCarbon was found to be stable for several hours. (c) 2008 American Institute of Physics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Physical and electrochemical properties of nanostructured Ni-doped manganese oxides (MnO(x)) catalysts supported on different carbon powder substrates were investigated so as to characterize any carbon substrate effect toward the oxygen reduction reaction (ORR) kinetics in alkaline medium. These NiMnO(x)/C materials were characterized using physicochemical analyses. Small insertion of Ni atoms in the MnO(x) lattice was observed, which consists of a true doping of the manganese oxide phase. The corresponding NiMnO(x) phase is present in the form of needles or agglomerates, with crystallite sizes in the order of 1.5-6.7 nm (from x-ray diffraction analyses). Layered manganite (MnOOH) phase has been detected for the Monarch 1000-supported NiMnO(x) material, while different species of MnO(x) phases are present at the E350G and MM225 carbons. Electrochemical studies in thin porous coating active layers in the rotating ring-disk electrode setup revealed that the MnO(x) catalysts present better ORR kinetics and electrochemical stability upon Ni doping. The ORR follows the so-called peroxide mechanism on MnO(x)/C catalysts, with the occurrence of minority HO(2)(-) disproportionation reaction. The HO(2)(-) disproportionation reaction progressively increases with the Ni content in NiMnO(x) materials. The catalysts supported on the MM225 and E350G carbons promote faster disproportionation reaction, thus leading to an overall four-electron ORR pathway. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3528439] All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Convergent beam Kikuchi diffraction was used to accurately determine the orientation relationships (ORs) between austenite and martensite, and between austenite and granular bainite in two Fe-Ni-Mn-C alloys. Both martensite and granular bainite have the same crystallographic characteristics with the OR: (111)(A)parallel to(101)(F), [1 (1) over bar0](A) 2.5degrees +/- 2degrees from [1 (1) over bar(1) over bar](B).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The effect of test temperature, which controls the stability of austenite, on the impact toughness of a low carbon Fe-Ni-Mn-C austenitic steel and 304 stainless steel, has been investigated. Under impact conditions, stress-induced martensitic transformation occurred, in a region near the fracture surface, at test temperatures below 80degreesC for the Fe-Ni-Mn-C steel and below -25degreesC for 304 stainless steel. The former shows significant transformation toughening and the highest impact toughness was obtained at 10degreesC, which corresponds to the maximum amount of martensite formed by stress-induced transformation above the Ms temperature. The stress-induced martensitic transformation contributes negatively to the impact toughness in the 304 stainless steel. Increasing the amount of stress-induced transformation to martensite, lowered the impact toughness. The experimental results can be well explained by the Antolovich theory through the analysis of metallography and fractography. The different effect of stress-induced transformation on the impact toughness in Fe-Ni-Mn-C steel and 304 stainless steel has been further understood by applying the crystallographic model for stress-induced martensitic transformation to these two steels. (C) 2002 Kluwer Academic Publishers.