960 resultados para Car Carrier
Resumo:
Three strategies for approaching the design and synthesis of non-chemically amplified resists (non-CARs) are presented. These are linear polycarbonates, star polyester-blk-poly(methyl methacrylate) and comb polymers with polysulfone backbones. The linear polycarbonates were designed to cleave when irradiated with 92 eV photons and high Tg alicyclic groups were incorporated into the backbone to increase Tg and etch resistance. The star block copolymers were designed to have a core that is sensitive to 92 eV photons and arms that have the potential to provide properties such as high Tg and etch resistance. Similarly the polysulfone comb polymers were designed to have an easily degradable polymer backbone and comb-arms that impart favorable physical properties. Initial patterning results are presented for a number of the systems.
Resumo:
This paper considers the design of active control for car suspension systems using a particular form of energy-based control called Interconnection-and-Damping-Assignment Passivity-Based Control (IDA-PBC). This approach allows one to shape the kinetic and potential energy as well as modify the power flow among different components of the system by changing the interconnection and dissipative structure in a meaningful way. Different controller parameterisations are considered to design a class of controllers for active suspension systems.
Resumo:
The social cost of road injury and fatalities is still unacceptable. The driver is often mainly responsible for road crashes, therefore changing the driver behaviour is one of the most important and most challenging priority in road transport. This paper presents three innovative visions that articulate the potential of using Vehicle to Vehicle (V2V) communication for supporting the exchange of social information amongst drivers. We argue that there could be tremendous benefits in socialising cars to influence human driving behaviours for the better and that this aspect is still relevant in the age of looming autonomous cars. Our visions provide theoretical grounding how V2V infrastructure and emerging human–machine interfaces (HMI) could persuade drivers to: (i) adopt better (e.g. greener) driving practices, (ii) reduce drivers aggressiveness towards pro-social driving behaviours, and (iii) reduce risk-taking behaviour in young, particularly male, adults. The visions present simple but powerful concepts that reveal ‘good’ aspects of the driver behaviour to other drivers and make them contagious. The use of self-efficacy, social norms, gamification theories and social cues could then increase the likelihood of a widespread adoption of such ‘good’ driving behaviours.
Resumo:
This paper investigates whether the net benefits from owning a vehicle, proxied by annual miles driven, explain the price declines observed over a vehicle's life. We first model the household decision on how much to drive each of its vehicles. Then we empirically establish that variation in household annual miles across brands explains observed price declines. Furthermore, the effect of vehicle age on annual miles decisions (and consequently on market value) depends on household characteristics and the composition of the vehicle stock owned.
Resumo:
There are currently more than 700 cities operating bike share programs. Purported benefits of bike share include flexible mobility, physical activity, reduced congestion, emissions and fuel use. Implicit or explicit in the calculation of program benefits are assumptions regarding the modes of travel replaced by bike share journeys. This paper examines the degree to which car trips are replaced by bike share, through an examination of survey and trip data from bike share programs in Melbourne, Brisbane, Washington, D.C., London, and Minneapolis/St. Paul. A secondary and unique component of this analysis examines motor vehicle support services required for bike share fleet rebalancing and maintenance. These two components are then combined to estimate bike share’s overall contribution to changes in vehicle kilometers traveled. The results indicate an estimated reduction in motor vehicle use due to bike share of approx. 90,000 km per annum in Melbourne and Minneapolis/St. Paul and 243,291 km for Washington, D.C. London’s bike share program however recorded an additional 766,341 km in motor vehicle use. This was largely due to a low car mode substitution rate and substantial truck use for rebalancing of bicycles. As bike share programs mature, evaluation of their effectiveness in reducing car use may become increasingly important. Researchers can adapt the analytical approach proposed in this paper to assist in the evaluation of current and future bike share programs.
Resumo:
Until recently, the low-abundance (LA) range of the serum proteome was an unexplored reservoir of diagnostic information. Today it is increasingly appreciated that a diagnostic goldmine of LA biomarkers resides in the blood stream in complexed association with more abundant higher molecular weight carrier proteins such as albumin and immunoglobulins. As we now look to the possibility of harvesting these LA biomarkers more efficiently through engineered nano-scale particles, mathematical approaches are needed in order to reveal the mechanisms by which blood carrier proteins act as molecular 'mops' for LA diagnostic cargo, and the functional relationships between bound LA biomarker concentrations and other variables of interest such as biomarker intravasation and clearance rates and protein half-lives in the bloodstream. Here we show, by simple mathematical modeling, how the relative abundance of large carrier proteins and their longer half-lives in the bloodstream work together to amplify the total blood concentration of these tiny biomarkers. The analysis further suggests that alterations in the production of biomarkers lead to gradual rather than immediate changes in biomarker levels in the blood circulation. The model analysis also points to the characteristics of artificial nano-particles that would render them more efficient harvesters of tumor biomarkers in the circulation, opening up possibilities for the early detection of curable disease, rather than simply better detection of advanced disease.
Resumo:
Twenty-three non-methane hydrocarbons were captured from the exhaust of a car operating on unleaded petrol (ULP) and 10% ethanol fuels at steady speed on a chassis dynamometer. The compounds were identified and quantified by GC/MS/FID and their emission concentrations at 60 km/h, 80km/h and idle speed were evaluated. The most abundant compounds in the exhaust included n-hexane, n-heptane, benzene, toluene, ethyl benzene, m- and p-xylenes, and methylcyclopentane. Because of the large number of compounds involved, no attempt was made to compare the emission concentrations of the compounds. Rather the sum of the emission concentrations for the suite of compounds identified was compared when the car was powered by ULP and 10% ethanol fuel. It was evident from the results that the emission concentrations and factors were generally higher with ULP than with 10% ethanol fuel. The total emission concentrations with the ULP fuel were 2.8, 4.2 and 2.6 times the corresponding values for the 10% ethanol fuel at 60km/h, 80km/h and idle speed, respectively. The implications of the results on the environment are discussed in the paper.
Resumo:
In this letter, the velocity distributions of charge carriers in high-mobility polymer thin-film transistors (TFTs) with a diketopyrrolopyrrole- naphthalene copolymer (PDPP-TNT) semiconductor active layer are reported. The velocity distributions are found to be strongly dependent on measurement temperatures as well as annealing conditions. Considerable inhomogeneity is evident at low measurement temperatures and for low annealing temperatures. Such transient transport measurements can provide additional information about charge carrier transport in TFTs which are unavailable using steady-state transport measurements.
Resumo:
We report charge-carrier velocity distributions in high-mobility polymer thin-film transistors (PTFTs) employing a dual-gate configuration. Our time-domain measurements of dual-gate PTFTs indicate higher effective mobility as well as fewer low-velocity carriers than in single-gate operation. Such nonquasi-static (NQS) measurements support and clarify the previously reported results of improved device performance in dual-gate devices by various groups. We believe that this letter demonstrates the utility of NQS measurements in studying charge-carrier transport in dual-gate thin-film transistors.
Resumo:
The relationship between charge carrier lifetime and mobility in a bulk heterojunction based organic solar cell, utilizing diketopyrrolopyrole- naphthalene co-polymer and PC71BM in the photoactive blend layer, is investigated using the photoinduced charge extraction by linearly increasing voltage technique. Light intensity, delay time, and temperature dependent experiments are used to quantify the charge carrier mobility and density as well as the temperature dependence of both. From the saturation of photoinduced current at high laser intensities, it is shown that Langevin-type bimolecular recombination is present in the studied system. The charge carrier lifetime, especially in Langevin systems, is discussed to be an ambiguous and unreliable parameter to determine the performance of organic solar cells, because of the dependence of charge carrier lifetime on charge carrier density, mobility, and type of recombination. It is revealed that the relation between charge mobility (μ) and lifetime (τ) is inversely proportional, where the μτ product is independent of temperature. The results indicate that in photovoltaic systems with Langevin type bimolecular recombination, the strategies to increase the charge lifetime might not be beneficial because of an accompanying reduction in charge carrier mobility. Instead, the focus on non-Langevin mechanisms of recombination is crucial, because this allows an increase in the charge extraction rate by improving the carrier lifetime, density, and mobility simultaneously. © 2013 AIP Publishing LLC.
Resumo:
A method for calculating visual odometry for ground vehicles with car-like kinematic motion constraints similar to Ackerman's steering model is presented. By taking advantage of this non-holonomic driving constraint we show a simple and practical solution to the odometry calculation by clever placement of a single camera. The method has been implemented successfully on a large industrial forklift and a Toyota Prado SUV. Results from our industrial test site is presented demonstrating the applicability of this method as a replacement for wheel encoder-based odometry for these vehicles.
Resumo:
Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams. It is necessary to consider human-factors in {CF} modeling for a more realistic representation of {CF} behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of {CF} models available in the literature, none of these specifically focuses on the human factors in these models. This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area.
Resumo:
This thesis examined the factors contributing to bikeshare participation in Brisbane and Melbourne, and opportunities for increasing bikeshare usage. The degree to which bikeshare impacts on car use was also quantified. The findings of this program of research have implications for existing as well as planned bikeshare programs, both in Australia and abroad.
Resumo:
Multitasking, such as the concurrent use of a mobile phone and operating a motor vehicle, is a significant distraction that impairs driving performance and is becoming a leading cause of motor vehicle crashes. This study investigates the impact of mobile phone conversations on car-following behaviour. The CARRS-Q Advanced Driving Simulator was used to test a group of young Australian drivers aged 18 to 26 years on a car-following task in three randomised phone conditions: baseline (no phone conversation), hands-free and handheld. Repeated measure ANOVA was applied to examine the effect of mobile phone distraction on selected car-following variables such as driving speed, spacing, and time headway. Overall, drivers tended to select slower driving speeds, larger vehicle spacings, and longer time headways when they were engaged in either hands-free or handheld phone conversations, suggesting possible risk compensatory behaviour. In addition, phone conversations while driving influenced car-following behaviour such that variability was increased in driving speeds, vehicle spacings, and acceleration and decelerations. To further investigate car-following behaviour of distracted drivers, driver time headways were modelled using Generalized Estimation Equation (GEE). After controlling for various exogenous factors, the model predicts an increase of 0.33 seconds in time headway when a driver is engaged in hands-free phone conversation and a 0.75 seconds increase for handheld phone conversation. The findings will improve the collective understanding of distraction on driving performance, in particular car following behaviour which is most critical in the determination of rear-end crashes.