983 resultados para Calibration plot


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A validation study has been performed using the Soil and Water Assessment Tool (SWAT) model with data collected for the Upper Maquoketa River Watershed (UMRW), which drains over 16,000 ha in northeast Iowa. This validation assessment builds on a previous study with nested modeling for the UMRW that required both the Agricultural Policy EXtender (APEX) model and SWAT. In the nested modeling approach, edge-offield flows and pollutant load estimates were generated for manure application fields with APEX and were then subsequently routed to the watershed outlet in SWAT, along with flows and pollutant loadings estimated for the rest of the watershed routed to the watershed outlet. In the current study, the entire UMRW cropland area was simulated in SWAT, which required translating the APEX subareas into SWAT hydrologic response units (HRUs). Calibration and validation of the SWAT output was performed by comparing predicted flow and NO3-N loadings with corresponding in-stream measurements at the watershed outlet from 1999 to 2001. Annual stream flows measured at the watershed outlet were greatly under-predicted when precipitation data collected within the watershed during the 1999-2001 period were used to drive SWAT. Selection of alternative climate data resulted in greatly improved average annual stream predictions, and also relatively strong r2 values of 0.73 and 0.72 for the predicted average monthly flows and NO3-N loads, respectively. The impact of alternative precipitation data shows that as average annual precipitation increases 19%, the relative change in average annual streamflow is about 55%. In summary, the results of this study show that SWAT can replicate measured trends for this watershed and that climate inputs are very important for validating SWAT and other water quality models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper points out an empirical puzzle that arises when an RBC economy with a job matching function is used to model unemployment. The standard model can generate sufficiently large cyclical fluctuations in unemployment, or a sufficiently small response of unemployment to labor market policies, but it cannot do both. Variable search and separation, finite UI benefit duration, efficiency wages, and capital all fail to resolve this puzzle. However, both sticky wages and match-specific productivity shocks help the model reproduce the stylized facts: both make the firm's flow of surplus more procyclical, thus making hiring more procyclical too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a suitable Hull and White type formula we develop a methodology to obtain asecond order approximation to the implied volatility for very short maturities. Using thisapproximation we accurately calibrate the full set of parameters of the Heston model. Oneof the reasons that makes our calibration for short maturities so accurate is that we alsotake into account the term-structure for large maturities. We may say that calibration isnot "memoryless", in the sense that the option's behavior far away from maturity doesinfluence calibration when the option gets close to expiration. Our results provide a wayto perform a quick calibration of a closed-form approximation to vanilla options that canthen be used to price exotic derivatives. The methodology is simple, accurate, fast, andit requires a minimal computational cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper theoretically and empirically documents a puzzle that arises when an RBC economy with a job matching function is used to model unemployment. The standard model can generate sufficiently large cyclical fluctuations in unemployment, or a sufficiently small response of unemployment to labor market policies, but it cannot do both. Variable search and separation, finite UI benefit duration, efficiency wages, and capital all fail to resolve this puzzle. However, either sticky wages or match-specific productivity shocks can improve the model's performance by making the firm's flow of surplus more procyclical, which makes hiring more procyclical too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tiivistelmä: TDR-mittausten kalibrointi viljeltyjen turvemaiden kosteuden mittaamiseen

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accomplish high quality of final products in pharmaceutical industry is a challenge that requires the control and supervision of all the manufacturing steps. This request created the necessity of developing fast and accurate analytical methods. Near infrared spectroscopy together with chemometrics, fulfill this growing demand. The high speed providing relevant information and the versatility of its application to different types of samples lead these combined techniques as one of the most appropriated. This study is focused on the development of a calibration model able to determine amounts of API from industrial granulates using NIR, chemometrics and process spectra methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calculation of elasticity parameters by sonic and ultra sonic wave propagation in saturated soils using Biot's theory needs the following variables : forpiation density and porosity (p, ø), compressional and shear wave velocities (Vp, Vs), fluid density, viscosity and compressibility (Pfi Ilfi Ki), matrix density and compressibility (p" K), The first four parameters can be determined in situ using logging probes. Because fluid and matrix characteristics are not modified during core extraction, they can be obtained through laboratory measurements. All parameters necessitate precise calibrations in various environments and for specific range of values encountered in soils. The slim diameter of boreholes in shallow geophysics and the high cost of petroleum equipment demand the use of specific probes, which usually only give qualitative results. The measurement 'of density is done with a gamma-gamma probe and the measurement of hydrogen index, in relation to porosity, by a neutron probe. The first step of this work has been carried out in synthetic formations in the laboratory using homogeneous media of known density and porosity. To establish borehole corrections different casings have been used. Finally a comparison between laboratory and in situ data in cored holes of known geometry and casing has been performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relationships between porosity and hydraulic conductivity tend to be strongly scale- and site-dependent and are thus very difficult to establish. As a result, hydraulic conductivity distributions inferred from geophysically derived porosity models must be calibrated using some measurement of aquifer response. This type of calibration is potentially very valuable as it may allow for transport predictions within the considered hydrological unit at locations where only geophysical measurements are available, thus reducing the number of well tests required and thereby the costs of management and remediation. Here, we explore this concept through a series of numerical experiments. Considering the case of porosity characterization in saturated heterogeneous aquifers using crosshole ground-penetrating radar and borehole porosity log data, we use tracer test measurements to calibrate a relationship between porosity and hydraulic conductivity that allows the best prediction of the observed hydrological behavior. To examine the validity and effectiveness of the obtained relationship, we examine its performance at alternate locations not used in the calibration procedure. Our results indicate that this methodology allows us to obtain remarkably reliable hydrological predictions throughout the considered hydrological unit based on the geophysical data only. This was also found to be the case when significant uncertainty was considered in the underlying relationship between porosity and hydraulic conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to calibrate the CENTURY, APSIM and NDICEA simulation models for estimating decomposition and N mineralization rates of plant organic materials (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum, Stylosanthes guyanensis) for 360 days in the Atlantic rainforest bioma of Brazil. The models´ default settings overestimated the decomposition and N-mineralization of plant residues, underlining the fact that the models must be calibrated for use under tropical conditions. For example, the APSIM model simulated the decomposition of the Stizolobium aterrimum and Calopogonium mucunoides residues with an error rate of 37.62 and 48.23 %, respectively, by comparison with the observed data, and was the least accurate model in the absence of calibration. At the default settings, the NDICEA model produced an error rate of 10.46 and 14.46 % and the CENTURY model, 21.42 and 31.84 %, respectively, for Stizolobium aterrimum and Calopogonium mucunoides residue decomposition. After calibration, the models showed a high level of accuracy in estimating decomposition and N- mineralization, with an error rate of less than 20 %. The calibrated NDICEA model showed the highest level of accuracy, followed by the APSIM and CENTURY. All models performed poorly in the first few months of decomposition and N-mineralization, indicating the need of an additional parameter for initial microorganism growth on the residues that would take the effect of leaching due to rainfall into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cropping system influences the interception of water by plants, water storage in depressions on the soil surface, water infiltration into the soil and runoff. The aim of this study was to quantify some hydrological processes under no tillage cropping systems at the edge of a slope, in 2009 and 2010, in a Humic Dystrudept soil, with the following treatments: corn, soybeans, and common beans alone; and intercropped corn and common bean. Treatments consisted of four simulated rainfall tests at different times, with a planned intensity of 64 mm h-1 and 90 min duration. The first test was applied 18 days after sowing, and the others at 39, 75 and 120 days after the first test. Different times of the simulated rainfall and stages of the crop cycle affected soil water content prior to the rain, and the time runoff began and its peak flow and, thus, the surface hydrological processes. The depth of the runoff and the depth of the water intercepted by the crop + soil infiltration + soil surface storage were affected by the crop systems and the rainfall applied at different times. The corn crop was the most effective treatment for controlling runoff, with a water loss ratio of 0.38, equivalent to 75 % of the water loss ratio exhibited by common bean (0.51), the least effective treatment in relation to the others. Total water loss by runoff decreased linearly with an increase in the time that runoff began, regardless of the treatment; however, soil water content on the gravimetric basis increased linearly from the beginning to the end of the rainfall.