968 resultados para CYLINDRICAL CONFINEMENT
Resumo:
The problem of a two-layer circular cylindrical shell subjected to radial ring loading has been solved theoretically. The solution is developed by uniting the elasticity solution through Love function approach for the inner thick shell with the Flügge shell theory for the thin outer shell. Numerical work has been done with a digital computer for different values of shell geometry parameters and material constants. The general behaviour of the composite shell has been studied in the light of these numerical results.
Resumo:
The problem of a long, thin circular cylindrical shell enclosed in an elastic casing and subjected to a ring of radial load on the inner rim is solved using the Love function for the casing in conjunction with Flügge shell theory. Numerical work has been done with a digital computer and the results for stress and displacement fields are given for various values of the shell geometry parameters and material constants.
Resumo:
The problem is solved using the Love function and Flügge shell theory. Numerical work has been done with a computer for various values of shell geometry parameters and elastic constants.
Resumo:
When a fluid with memory is injected into any flow region some assumptions regarding the initial state of stress have to be made in order to determine the state of stress at any subsequent instant. For a Maxwell fluid, it is assumed that the fluid near the surface of injection is suddenly stressed and responds by starting flow in accordance with the mechanical model chosen. The flow of a Maxwell fluid with a single relaxation time has been determined under the above assumption in the following two cases: (i) annulus between two porous concentric circular cylinders, and (ii) space between two porous and infinitely extending parallel plates. The nature of flow in the present case is similar to that of the Reiner-Rivlin fluids obtained by Narasimhan2).
Resumo:
The stability of an incompressible inviscid, perfectly conducting cylindrical plasma against azimuthal disturbances in the presence of a monotonic decreasing magnetic field having a constant pitch is discussed by using energy principle. The results obtained by this principle are compared for m = 1 mode (which is a dangerous mode in which there is a lateral shift of the entire column) with that obtained by normal mode analysis. It is found that m = 1 mode is always unstable. Further, an axial line current, external axial field and the surface tension tend to stabilise m ≠ modes.
Resumo:
In the present note we have studied the harmonic and anharmonic oscillations of cylindrical plasma using Lagrangian formalism. In order to study the harmonic oscillations, the equations are linearized and the resulting equation for the displacement has been numerically solved. For situations present in thermonuclear reactors, the presence of axial magnetic field is found necessary to make the periods of oscillation to become comparable with the time required for the thermonuclear reactions to set in. A detailed analysis of the anharmonic oscillations reveals that the significant interaction is between the first and the second mode. The fundamental period of anharmonic oscillation is more than the corresponding period of harmonic oscillations by 9·2%. Graphs have been drawn for the amplitudes of relative variations in density and magnetic field and of the time-varying part of anharmonic oscillation.
Resumo:
A finite circular cylindrical shell subjected to a band of uniform pressure on its outer rim was investigated, using three-dimensional elasticity theory and the classical shell theories of Timoshenko (or Donnell) and Flügge. Detailed comparison of the resulting stresses and displacements was carried out for shells with ratios of inner to outer shell radii equal to 0.80, 0.85, 0.90 and 0.93 and for ratios of outer shell diameter to length of the shell equal to 0.5, 1 and 2. The ratio of band width to length of the shell was 0.2 and Poisson's ratio used was equal to 0.3. An Elliot 803 digital computer was used for numerical computations.
Resumo:
Bending analysis of closed cylindrical shells subjected to asymmetric load and having different support conditions is of interest in the design of chimneys, water towers, oil storage tanks, etc. A simple method of analyzing a long cantilever cylindrical shell, subjected to asymmetric load, is presented in the paper, using Schorer’s shell theory and orthogonal functions. The application of the solution has been illustrated with an example of a cantilever shell subjected to wind loads. The results obtained for this problem have been compared with the previously available results to illustrate the accuracy of the results obtained here. The solution presented can also be extended to a cylindrical shell with other support conditions, as well as to the study of free vibration of a cylindrical shell. The present solution will be very useful for designers who need to obtain numerical results for specific problems with minimum computational effort.
Resumo:
The present work gives a comprehensive numerical study of the evolution and decay of cylindrical and spherical nonlinear acoustic waves generated by a sinusoidal source. Using pseudospectral and predictor–corrector implicit finite difference methods, we first reproduced the known analytic results of the plane harmonic problem to a high degree of accuracy. The non-planar harmonic problems, for which the amplitude decay is faster than that for the planar case, are then treated. The results are correlated with the known asymptotic results of Scott (1981) and Enflo (1985). The constant in the old-age formula for the cylindrical canonical problem is found to be 1.85 which is rather close to 2, ‘estimated’ analytically by Enflo. The old-age solutions exhibiting strict symmetry about the maximum are recovered; these provide an excellent analytic check on the numerical solutions. The evolution of the waves for different source geometries is depicted graphically.
Resumo:
Results of photoelastic investigations conducted on cylindrical tubes (made of Araldite material) containing cracks oriented at 0°, 30°, 45°, 60° and 90° to the axis of the tube and subjected to axial and torsional loads are reported. The stress-intensity factors (SIFs) were determined by analysing the crack-tip stress fields. Smith and Smith's method [Engng Fracture Mech.4, 357–366 (1972)] and a new method developed by the authors by modifying Rakesh et al.'s method [Proc. 26th Congress of ISTAM, India (1981)] were employed to evaluate the mixed-mode SIFs.
Resumo:
The stochasticity of domain-wall (DW) motion in magnetic nanowires has been probed by measuring slow fluctuations, or noise, in electrical resistance at small magnetic fields. By controlled injection of DWs into isolated cylindrical nanowires of nickel, we have been able to track the motion of the DWs between the electrical leads by discrete steps in the resistance. Closer inspection of the time dependence of noise reveals a diffusive random walk of the DWs with a universal kinetic exponent. Our experiments outline a method with which electrical resistance is able to detect the kinetic state of the DWs inside the nanowires, which can be useful in DW-based memory designs.
Resumo:
Molecular dynamics simulations are used to examine the changes in water density and hydration characteristics of NaCl solutions confined in slit-shaped graphitic pores. Using a structural signature, we define the hydration limit as the salt concentration at which a sharp drop in the hydration number is observed. At small pores (H = 8.0-10 angstrom), confined water does not possess bulk-like features and remains in a layered arrangement between two surfaces. Despite this high degree of confinement, ions are able to form a quasi-2D hydration shell between two surfaces. Our results indicate the strong propensity of ions to form the first hydration shell, even under extremely confined aqueous environments. The hydration of ions is seen to weakly perturb the oxygen density distributions between two surfaces. The hydration number of Na+ reduces to about 4.15 at a pore width of H = 0.8 nm, when compared with the bulk hydration number of 6.25. At larger pore widths, above H = 16 angstrom, where bulk-like water densities are observed in the central regions of the pore, the hydration number is above 6.