983 resultados para CP-Violation
Resumo:
Ce mémoire présente l’application de la méthode de décomposition en termes de diagrammes aux désintégrations de mésons B vers trois mésons de type pseudos- calaire ne comportant pas de quarks charmés. La décomposition diagrammatique des désintégrations de types B → Kππ, B → KKK ̄, B → KK ̄π et B → πππ est effectuée de façon systématique. Il est démontré que lorsque l’on néglige les dia- grammes d’échanges et d’annihilations, dont les contributions sont estimées être petites, de nouvelles relations apparaissent entre les amplitudes. Ces relations sont de nouveaux tests du modèle standard qui ne peuvent être obtenus que par la méthode diagrammatique. Lorsque les données nécessaires sont disponibles, nous vérifions ces relations et obtenons un bon accord avec les données expérimentales. Nous démontrons également qu’il est possible d’utiliser le secteur B → Kππ pour mesurer la phase faible γ avec une incertitude théorique que nous estimons être de l’ordre de 5%. Les autres secteurs de désintégrations ne permettent d’extraire des phases faibles que si l’on invoque des approximations de précisions inconnues.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a. top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory to test the hypothesis of TeV scale strings and D brane models. An overview of these possibilities is presented in the spirit that it will serve as a companion to the Technical Design Reports (TDRs) by the particle detector groups ATLAS and CMS to facilitate the test of the new theoretical ideas at the LHC. Which of these ideas stands the test of the LHC data will govern the course of particle physics in the subsequent decades.
Resumo:
It is well known that experimental data, coming from solar and atmospheric neutrino detectors and also from experiments which look for neutrino oscillations. strongly suggest that neutrinos must have a mass different from zero. However at least the solar and/or the atmospheric neutrino data can be related to new flavor changing interactions beyond the standard model instead to the finite mass of neutrinos. This new physics may induce i) extra effects in neutrino-matter interactions, ii) CP violation in pion and lepton decays and, iii) muonium to antimuonium transition. We give two examples of models in which all those effects arise even with strictly massless neutrinos: the 331 model and multi-Higgs doublet extension of the standard model (mHDM) with flavor changing neutral currents in the charged lepton sector. It means that in this kind of models if neutrino masses were eventually needed, they will be independent of the parameters of the new interactions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We explore the features of neutrino oscillation which are relevant for measurements of the leptonic CP violating phase δ and the sign of Delta;m13 2 in experiments with low-energy conventional superbeams. Toward the goal, we introduce a new powerful tool called the CP trajectory diagram in bi-probability space which allows us to represent pictorially the three effects, the effects of (a) genuine CP violation due to the sin δ term, (6) CP conserving cos δ term, and (c) fake CP violation due to earth matter, separately in a single diagram. By using the diagram, we observe that there is a two-fold ambiguity in the determination of S which is related with the sign of Delta;m13 2. Possible ways of resolving the ambiguity are discussed. In particular, we point out that an in situ simultaneous measurement of δ and the sign of Delta;m13 2 can be carried out at distances of about 700 km, or at the Phase II of the JHF experiment provided that sin δ ·Delta;m13 2 < 0, both with a megaton class water Cherenkov detector.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the framework of gauged flavour symmetries, new fermions in parity symmetric representations of the standard model are generically needed for the compensation of mixed anomalies. The key point is that their masses are also protected by flavour symmetries and some of them are expected to lie way below the flavour symmetry breaking scale(s), which has to occur many orders of magnitude above the electroweak scale to be compatible with the available data from flavour changing neutral currents and CP violation experiments. We argue that, actually, some of these fermions would plausibly get masses within the LHC range. If they are taken to be heavy quarks and leptons, in (bi)-fundamental representations of the standard model symmetries, their mixings with the light ones are strongly constrained to be very small by electroweak precision data. The alternative chosen here is to exactly forbid such mixings by breaking of flavour symmetries into an exact discrete symmetry, the so-called proton-hexality, primarily suggested to avoid proton decay. As a consequence of the large value needed for the flavour breaking scale, those heavy particles are long-lived and rather appropriate for the current and future searches at the LHC for quasi-stable hadrons and leptons. In fact, the LHC experiments have already started to look for them.