991 resultados para COPHYLOGENY RECONSTRUCTION PROBLEM
Resumo:
We report on a new technique to reconstruct the 3D dielectric function change in transparent dielectric materials and the application of the technique for on-line monitoring of refractive index modification in BK7 glass during direct femtosecond laser microfabrication. The complex optical field scattered from the modified region is measured using two-beam, single-shot interferogram and the distribution of the modified refractive index is reconstructed by numerically solving the inverse scattering problem in Born approximation. The optical configuration suggested is further development of digital holographic microscopy. It takes advantage of high spatial resolution and almost the same optical paths for both interfering beams, and allows ultrafast time resolution. © Springer Science+Business Media, LLC. 2011.
Resumo:
An iterative method for reconstruction of solutions to second order elliptic equations by Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the elliptic operator and its adjoint. The convergence proof of this method in a weighted L2 space is included. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
In this paper, three iterative procedures (Landweber-Fridman, conjugate gradient and minimal error methods) for obtaining a stable solution to the Cauchy problem in slow viscous flows are presented and compared. A section is devoted to the numerical investigations of these algorithms. There, we use the boundary element method together with efficient stopping criteria for ceasing the iteration process in order to obtain stable solutions.
Resumo:
In this article, an iterative algorithm based on the Landweber-Fridman method in combination with the boundary element method is developed for solving a Cauchy problem in linear hydrostatics Stokes flow of a slow viscous fluid. This is an iteration scheme where mixed well-posed problems for the stationary generalized Stokes system and its adjoint are solved in an alternating way. A convergence proof of this procedure is included and an efficient stopping criterion is employed. The numerical results confirm that the iterative method produces a convergent and stable numerical solution. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007
Resumo:
The problem considered is that of determining the shape of a planar acoustically sound-soft obstacle from knowledge of the far-field pattern for one time-harmonic incident field. Two methods, which are based on the solution of a pair of integral equations representing the incoming wave and the far-field pattern, respectively, are proposed and investigated for finding the unknown boundary. Numerical resultsare included which show that the methods give accurate numerical approximations in relatively few iterations.
Resumo:
The problem considered is that of determining the shape of a plane acoustically sound-soft obstacle from the knowledge of the far-field pattern for one time-harmonic incident field. An iterative procedure is proposed based on two boundary integrals representing the incident field and the far-field pattern, respectively. Numerical examples are included which show that the procedure gives accurate numerical approximations in relatively few iterations.
Resumo:
An iterative method for reconstruction of the solution to a parabolic initial boundary value problem of second order from Cauchy data is presented. The data are given on a part of the boundary. At each iteration step, a series of well-posed mixed boundary value problems are solved for the parabolic operator and its adjoint. The convergence proof of this method in a weighted L2-space is included.
Resumo:
We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.
Resumo:
2000 Mathematics Subject Classification: 65C05
Resumo:
The purpose of this research is to investigate the various social, political and economic factors that contributed to Canada’s failure to implement a universal school lunch program during the 1940s. Although Canada developed several other social welfare programs in the post-war period, it remains one of the only industrialized nations that does not provide hot meals to children in elementary or secondary schools. Data from the province of Ontario, a major site of postwar reconstruction and policy-making, has been taken up to inform the broader national discourse on school lunches from the 1940s. National, Ontario provincial and City of Toronto archival records were collected and analyzed according to common themes, in order to identify key barriers that constrained government support of a hot meal program. Archival records were identified using key words, and were limited to materials created between 1930-1952. Analysis suggests that sufficient need for a hot meal program had not been established during the 1940s. Despite misleading nutrition messages, rates of malnutrition and nutrient-related disease were at an all-time low, and many Ontario school boards did not appear to have the necessary infrastructure required to supply all pupils with hot meals. The Canadian government had already employed significant resources to improve existing social security programs by coupling them with health education. This strategy reflected a shift in understanding malnutrition as a knowledge-based problem, as opposed to income-based. This understanding was further reinforced through the moralized dissemination of nutrition information, which placed blame on women for improperly raising their children. Ultimately, the strong uptake of nutrition as a public health issue in Ontario may have limited prospective responses to solutions already utilized in the public health domain, and directed favour away from a universal school lunch program for Canada.
Resumo:
Photothermal imaging allows to inspect the structure of composite materials by means of nondestructive tests. The surface of a medium is heated at a number of locations. The resulting temperature field is recorded on the same surface. Thermal waves are strongly damped. Robust schemes are needed to reconstruct the structure of the medium from the decaying time dependent temperature field. The inverse problem is formulated as a weighted optimization problem with a time dependent constraint. The inclusions buried in the medium and their material constants are the design variables. We propose an approximation scheme in two steps. First, Laplace transforms are used to generate an approximate optimization problem with a small number of stationary constraints. Then, we implement a descent strategy alternating topological derivative techniques to reconstruct the geometry of inclusions with gradient methods to identify their material parameters. Numerical simulations assess the effectivity of the technique.
Resumo:
A camera maps 3-dimensional (3D) world space to a 2-dimensional (2D) image space. In the process it loses the depth information, i.e., the distance from the camera focal point to the imaged objects. It is impossible to recover this information from a single image. However, by using two or more images from different viewing angles this information can be recovered, which in turn can be used to obtain the pose (position and orientation) of the camera. Using this pose, a 3D reconstruction of imaged objects in the world can be computed. Numerous algorithms have been proposed and implemented to solve the above problem; these algorithms are commonly called Structure from Motion (SfM). State-of-the-art SfM techniques have been shown to give promising results. However, unlike a Global Positioning System (GPS) or an Inertial Measurement Unit (IMU) which directly give the position and orientation respectively, the camera system estimates it after implementing SfM as mentioned above. This makes the pose obtained from a camera highly sensitive to the images captured and other effects, such as low lighting conditions, poor focus or improper viewing angles. In some applications, for example, an Unmanned Aerial Vehicle (UAV) inspecting a bridge or a robot mapping an environment using Simultaneous Localization and Mapping (SLAM), it is often difficult to capture images with ideal conditions. This report examines the use of SfM methods in such applications and the role of combining multiple sensors, viz., sensor fusion, to achieve more accurate and usable position and reconstruction information. This project investigates the role of sensor fusion in accurately estimating the pose of a camera for the application of 3D reconstruction of a scene. The first set of experiments is conducted in a motion capture room. These results are assumed as ground truth in order to evaluate the strengths and weaknesses of each sensor and to map their coordinate systems. Then a number of scenarios are targeted where SfM fails. The pose estimates obtained from SfM are replaced by those obtained from other sensors and the 3D reconstruction is completed. Quantitative and qualitative comparisons are made between the 3D reconstruction obtained by using only a camera versus that obtained by using the camera along with a LIDAR and/or an IMU. Additionally, the project also works towards the performance issue faced while handling large data sets of high-resolution images by implementing the system on the Superior high performance computing cluster at Michigan Technological University.
Resumo:
We consider the Cauchy problem for the Laplace equation in 3-dimensional doubly-connected domains, that is the reconstruction of a harmonic function from knowledge of the function values and normal derivative on the outer of two closed boundary surfaces. We employ the alternating iterative method, which is a regularizing procedure for the stable determination of the solution. In each iteration step, mixed boundary value problems are solved. The solution to each mixed problem is represented as a sum of two single-layer potentials giving two unknown densities (one for each of the two boundary surfaces) to determine; matching the given boundary data gives a system of boundary integral equations to be solved for the densities. For the discretisation, Weinert's method [24] is employed, which generates a Galerkin-type procedure for the numerical solution via rewriting the boundary integrals over the unit sphere and expanding the densities in terms of spherical harmonics. Numerical results are included as well.
Regularization meets GreenAI: a new framework for image reconstruction in life sciences applications
Resumo:
Ill-conditioned inverse problems frequently arise in life sciences, particularly in the context of image deblurring and medical image reconstruction. These problems have been addressed through iterative variational algorithms, which regularize the reconstruction by adding prior knowledge about the problem's solution. Despite the theoretical reliability of these methods, their practical utility is constrained by the time required to converge. Recently, the advent of neural networks allowed the development of reconstruction algorithms that can compute highly accurate solutions with minimal time demands. Regrettably, it is well-known that neural networks are sensitive to unexpected noise, and the quality of their reconstructions quickly deteriorates when the input is slightly perturbed. Modern efforts to address this challenge have led to the creation of massive neural network architectures, but this approach is unsustainable from both ecological and economic standpoints. The recently introduced GreenAI paradigm argues that developing sustainable neural network models is essential for practical applications. In this thesis, we aim to bridge the gap between theory and practice by introducing a novel framework that combines the reliability of model-based iterative algorithms with the speed and accuracy of end-to-end neural networks. Additionally, we demonstrate that our framework yields results comparable to state-of-the-art methods while using relatively small, sustainable models. In the first part of this thesis, we discuss the proposed framework from a theoretical perspective. We provide an extension of classical regularization theory, applicable in scenarios where neural networks are employed to solve inverse problems, and we show there exists a trade-off between accuracy and stability. Furthermore, we demonstrate the effectiveness of our methods in common life science-related scenarios. In the second part of the thesis, we initiate an exploration extending the proposed method into the probabilistic domain. We analyze some properties of deep generative models, revealing their potential applicability in addressing ill-posed inverse problems.
Resumo:
Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system.