969 resultados para COORDINATED PLATINUM(II) COMPLEXES
Resumo:
A series of mono(eta(5)-cyclopentadienyl)metal-(II) complexes with nitro-substituted thienyl acetylide ligands of general formula [M(eta(5)-C5H5)(L)(C C{C4H2S}(n)NO2)] (M = Fe, L = kappa(2)-DPPE, n = 1,2; M = Ru, L = kappa(2)-DPPE, 2 PPh3, n = 1, 2; M = Ni, L = PPh3, n = 1, 2) has been synthesized and fully characterized by NMR, FT-IR, and UV-Vis spectroscopy. The electrochemical behavior of the complexes was explored by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at 1500 nm. The effect of donor abilities of different organometallic fragments on the quadratic hyperpolarizabilities was studied and correlated with spectroscopic and electrochemical data. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were employed to get a better understanding of the second-order nonlinear optical properties in these complexes. In this series, the complexity of the push pull systems is revealed; even so, several trends in the second-order hyperpolarizability can still be recognized. In particular, the overall data seem to indicate that the existence of other electronic transitions in addition to the main MLCT clearly controls the effectiveness of the organometallic donor ability on the second-order NLO properties of these push pull systems.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
Two new tetranuclear complexes [Cu-4(mu-O)(L-1)-Cl-4] and [Cu-4(mu(4)-O)(L-2)(2)Cl-4] (2), where H2L1 is a macrocyclic ligand resulting from [2+2] condensation of 2,6-diformy1-4-methylphanol (DFF) and 1,3-bis(aminopropy1)tetramethyldisiloxane, and HL2 is a 1:2 condensation product: of DFF with trimethylsilyl p-aminobenzoate, have been prepared. The structures of the products were established by Xray diffraction. The complexes have been characterised by FTIR, UV/Vis spectroscopy, ES1 mass-spectrometry and magnetic susceptibility measurements. The latter revealed that the letrftriuclear complexes can be descr bed as two ferromagnetically coupled dinuclear units, in which the two copper(II) ions interact antiferromacinetically. The ccimpi.iunds act as homogeneous catalyst precursors for a number of single-pot reactions, including (I) hydrocarbaxylation, with CO, H2O and K2S2O8, of a variety of linear and cyclic (n = 5-8) alkanes into the corresponding Cn+1 carboxylic acids, (ii) peroxidative oxidation of cyclohexane, and (iii) solvent-free microwave-assisted oxidation of 1-phenyletha.nol.
Resumo:
The behavior of two cationic copper complexes of acetylacetonate and 2,2'-bipyridine or 1,10-phenanthroline, [Cu(acac)(bipy)]Cl (1) and [Cu(acac)(phen)]Cl (2), in organic solvents and ionic liquids, was studied by spectroscopic and electrochemical techniques. Both complexes showed solvatochromism in ionic liquids although no correlation with solvent parameters could be obtained. By EPR spectroscopy rhombic spectra with well-resolved superhyperfine structure were obtained in most ionic liquids. The spin Hamiltonian parameters suggest a square pyramidal geometry with coordination of the ionic liquid anion. The redox properties of the complexes were investigated by cyclic voltammetry at a Pt electrode (d = 1 mm) in bmimBF(4) and bmimNTf(2) ionic liquids. Both complexes 1 and 2 are electrochemically reduced in these ionic media at more negative potentials than when using organic solvents. This is in agreement with the EPR characterization, which shows lower A(z) and higher g(z) values for the complexes dissolved in ionic liquids, than in organic solvents, due to higher electron density at the copper center. The anion basicity order obtained by EPR is NTf2-, N(CN)(2)(-), MeSO4- and Me2PO4-, which agrees with previous determinations. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
The reaction between 2-aminobenzenesulfonic acid and 2-hydroxy-3-methoxybenzaldehyde produces the acyclic Schiff base 2-[(2-hydroxy-3-methoxyphenyl) methylideneamino] benzenesulfonic acid (H2L center dot 3H(2)O) (1). In situ reactions of this compound with Cu(II) salts and, eventually, in the presence of pyridine (py) or 2,2'-bipyridine (2,2'-bipy) lead to the formation of the mononuclear complexes [CuL(H2O)(2)] (2) and [CuL(2,2'-bipy)]center dot DMF center dot H2O (3) and the diphenoxo-bridged dicopper compounds [CuL(py)](2) (4) and [CuL(EtOH)](2)center dot 2H(2)O (5). In 2-5 the L-2-ligand acts as a tridentate chelating species by means of one of the O-sulfonate atoms, the O-phenoxo and the N-atoms. The remaining coordination sites are then occupied by H2O (in 2), 2,2'-bipyridine (in 3), pyridine (in 4) or EtOH (in 5). Hydrogen bond interactions resulted in R-2(2) (14) and in R-4(4)(12) graph sets leading to dimeric species (in 2 and 3, respectively), 1D chain associations (in 2 and 5) or a 2D network (1). Complexes 2-5 are applied as selective catalysts for the homogeneous peroxidative (with tert-butylhydroperoxide, TBHP) oxidation of primary and secondary alcohols, under solvent-and additive-free conditions and under low power microwave (MW) irradiation. A quantitative yield of acetophenone was obtained by oxidation of 1-phenylethanol with compound 4 [TOFs up to 7.6 x 10(3) h(-1)] after 20 min of MW irradiation, whereas the oxidation of benzyl alcohol to benzaldehyde is less effective (TOF 992 h(-1)). The selectivity of 4 to oxidize the alcohol relative to the ene function is demonstrated when using cinnamyl alcohol as substrate.
Resumo:
A one-pot template reaction of sodium 2-(2-(dicyanomethylene) hydrazinyl) benzenesulfonate (NaHL1) with water and manganese(II) acetate tetrahydrate led to the mononuclear complex [Mn(H2O)(6)](HL1a)(2)center dot 4H(2)O (1), where (HL1a) -= 2-(SO3-)C6H4(NH)=N=C(C N) (CONH2) is the carboxamide species derived from nucleophilic attack of water on a cyano group of (HL1) . The copper tetramer [Cu-4(H2O)(10)(-) (1 kappa N: kappa O-2: kappa O, 2 kappa N: k(O)-L-2)(2)]center dot 2H(2)O (2) was obtained from reaction of Cu(NO3)(2)center dot 2.5H(2)O with sodium 5-(2( 4,4-dimethyl-2,6-dioxocyclohexylidene) hydrazinyl)-4-hydroxybenzene-1,3-disulfonate (Na2H2L2). Both complexes were characterized by elemental analysis, IR spectroscopy, ESI-MS and single crystal X-ray diffraction. They exhibit a high catalytic activity for the solvent-and additive-free microwave (MW) assisted oxidation of primary and secondary alcohols with tert-butylhydroperoxide, leading to yields of the oxidized products up to 85.5% and TOFs up to 1.90 x 103 h(-1) after 1 h under low power (5-10 W) MW irradiation. Moreover, the heterogeneous catalysts are easily recovered and reused, at least for three consecutive cycles, maintaining 89% of the initial activity and a high selectivity.
Resumo:
This work describes the synthesis and characterisation of Ni(II) complexes of the following neutral bidentate nitrogen ligands containing pyrazole (pz), pyrimidine (pm) and pyridine (py) aromatic rings: 2-pyrazol-1-yl-pyrimidine (pzpm), 2-(4-methyl-pyrazol-1-yl)-pyrimidine (4-Mepzpm), 2-(4-bromo-pyrazol-1-yl)-pyrimidine (4-Brpzpm), 2-(3,5-dimethyl-pyrazol-1-yl)-pyrimidine (pz*pm), 2-pyrazol-1-yl-pyridine (pzpy) and bis(3,5-dimethylpyrazol-1-yl)phenylmethane (bpz*mph). The complexes [NiBr2(pzpm)] (1), [NiBr2(4-Mepzpm)] (2), [NiBr2(4-Brpzpm)] (3), [NiBr2(pz*pm)] (4), [NiBr2(pzpy)] (5) and [NiBr2(bpz*mph)] (6) were tested as catalysts for ethylene polymerisation, in the presence of the cocatalysts methylaluminoxane (MAO) or diethylaluminium chloride (AlEt2Cl), the catalyst systems 1-3/MAO showing moderate to high activities up to the temperature of 20 °C only in the presence of MAO, whereas 4-6/MAO revealed to be inactive. Other related Pd(II) complexes, already reported in previous works, such as [PdClMe(pzpm)], [PdClMe(pz*pm)], [PdClMe(pzpy)] and [PdClMe(bpz*mph)], also showed to be inactive in the polymerisation of ethylene, when activated by MAO or AlEt2Cl. Selected samples of polyethylene products were characterised by GPC/SEC, 1H and 13C NMR and DSC, showing to be low molecular weight polymers with Mn values ranging from ca. 550 to 1500 g mol−1 and unusually low dispersities of 1.2–1.7, with total branching degrees generally varying between 2 and 12%, melting temperatures from 40 to 120 °C and crystallinities from 40 to 70%.
Resumo:
Platinum (II) complexes, for example, cisplatin and carboplatin, have been used as chemotherapeutic agents for the treatment of various types of cancer. Several other complexes of this metallic ion are also under clinical evaluation. This work describes the synthesis of five new platinum (II) complexes having furan and 5-nitrofuran derivatives and chloride as ligands. The compounds were characterized by NMR, IR and elemental analysis.
Resumo:
Two complexes of Rh(I) and Pd(II) with chloride and tridecylamine ligands were obtained and characterized by Elementary Analysis and by XPS and FTIR spectroscopies. Complexes anchored on γ-Al2O3 were tested in the styrene semi-hydrogenation reaction carried out in the absence or presence of a sulfur poison. Although both low loaded catalysts were highly selective, the Pd(II) complex was three times more active than the Rh(I) complex. The rhodium complex was more sulfur resistant but less active than the palladium complex. Differences in conversion and sulfur resistance between both complexes could be related to electronic and/or geometric effects.
Resumo:
Density functional theory was used to investigate the global and local reactivity of some cis-platinum(II) complexes including anticancer drugs, such as cisplatin and carboplatin. Calculated equilibrium geometries at mPW1PW/LANL2DZ* are in close agreement with their available X-ray data. We develop three new local reactivity descriptors: atomic descriptor of philicity, atomic descriptor group and atomic descriptor of philicity group for determining chemical reactivity and selectivity of the studied complexes. This contribution on chemical reactivity allow us to establish qualitative trends, which enable our descriptors for use in rational platinum based anticancer drug design.
Resumo:
Synthesis, spectral identification, and magnetic properties of three complexes of Ni(II), Cu(II), and Zn(II) are described. All three compounds have the general formula [M(L)2(H2O)2], where L = deprotonated phenol in the Schiff base 2-((z)-(3-methylpyridin-2-yleimino)methyl)phenol. The three complexes were synthesized in a one-step synthesis and characterized by elemental analysis, Fourier transform infrared spectroscopy, electronic spectra, X-ray diffraction (XRD), and room temperature magnetic moments. The Cu(II) and Ni(II) complexes exhibited room temperature magnetic moments of 1.85 B.M. per copper atom and 2.96 B.M. per nickel atom. The X-band electron spin resonance spectra of a Cu(II) sample in dimethylformamide frozen at 77 K (liquid nitrogen temperature) showed a typical ΔMS = ± 1 transition. The complexes ([M(L)2(H2O)2]) were investigated by the cyclic voltammetry technique, which provided information regarding the electrochemical mechanism of redox behavior of the compounds. Thermal decomposition of the complexes at 750 ºC resulted in the formation of metal oxide nanoparticles. XRD analyses indicated that the nanoparticles had a high degree of crystallinity. The average sizes of the nanoparticles were found to be approximately 54.3, 30.1, and 44.4 nm for NiO, CuO, and ZnO, respectively.
Resumo:
Electrode kinetics and study of 'transition state' with applied potential in case of [M - antibiotics - cephalothin] system were reported at pH = 7.30 ± 0.01 at suitable supporting electrolyte at 25.0ºC. The M = Co or Ni and antibiotics were doxycycline, chlortetracycline, oxytetracycline, tetracycline, minocycline, amoxicillin and chloramphenicol used as primary ligands and cephalothin as secondary ligand. Kinetic parameters viz. transfer coefficient (a), degree of irreversibility (l), diffusion coefficient (D) and rate constant (k) were determined. The values of a and k varied from 0.41 to 0.59 and 2.60 X 10-3 cm s-1 to 9.67 X 10-3 cm s-1 in case of [Co - antibiotics - cephalothin] system. In case of [Ni - antibiotics - cephalothin], a and k varied from 0.41 to 0.58 and 2.34 X 10-3 cm s-1 to 9.19 X 10-3 cm s-1 respectively confirmed that transition state behaves between oxidant and reductant response to applied potential and it adjusts it self in such a way that the same is located midway between dropping mercury electrode and solution interface. The values of rate constant confirmed the quasireversible nature of electrode processes. The stability constants (logb) of complexes were also determined.
Resumo:
Present studies indicate that alpha-tocopherol enhances the efficacy of cisplatin as demonstrated by inoculation of Dalton's lymphoma cells incubated with either cisplatin (5 or 10 µg/ml) alone or cisplatin + alpha-tocopherol (25 or 50 µg/ml) into C3H/He mice. Tumour cells (3 x 10(6) cells/mouse) incubated with cisplatin grow slowly in syngeneic mice as indicated by the late appearance of tumour. However, mice failed to develop tumour when inoculated with tumour cells incubated with cisplatin + alpha-tocopherol. When the animals were challenged with tumour cells (3 x 10(6) cells/mouse) on the 15th day after the initial inoculation, 30-50% survived more than 60 days, with 10% tumour-free survivors being observed in some groups. Antitumour activity was higher in mice receiving lymphoma cells (3 x 10(6) cells/mouse) preincubated with cisplatin + alpha-tocopherol compared to cisplatin alone. Tumour-bearing mice receiving cisplatin in combination with different concentrations of alpha-tocopherol exhibited significantly higher (P<0.001) intratumour platinum content (123-306%) but without any change in the kidney platinum content as compared to those receiving cisplatin (5 or 10 µg/ml) alone. Enhancement of cisplatin-induced tumour growth inhibition is probably due to the modulation of tumour cell membrane permeability by alpha-tocopherol. alpha-Tocopherol might increase the influx of cisplatin into tumour cells, causing the DNA repair machinery to be less efficient due to increased efficiency of adduct formation in the DNA molecule. This effect of alpha-tocopherol can render cisplatin more effective as an antitumour agent.
Resumo:
The initial employment of N-salicylidene-2-amino-5-chlorobenzoic acid (sacbH2) as bridging/chelating ligand in metal cluster chemistry has provided access to five new polynuclear NiII complexes with large nuclearities, unprecedented metal core topologies, and interesting magnetic properties. The obtained results are presented in two projects. The first project includes the investigation of the general Ni2+/RCO2-/sacbH2 reaction system (where R- = CH3-, But-, ButCH2-) in which the nature of the carboxylic acid was found to be of crucial importance, affecting enormously the nuclearity of the resulting complexes. The second project deals with the study of the general Ni2+/X-/sacbH2 reaction system (where X- = inorganic anions) under basic conditions, yielding new cluster compounds with molecular chain-like structures and ferromagnetic exchange interactions between the metal centers.