772 resultados para CONVENTIONAL HYBRID
Resumo:
As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.
Resumo:
As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.
Resumo:
Advertising investment and audience figures indicate that television continues to lead as a mass advertising medium. However, its effectiveness is questioned due to problems such as zapping, saturation and audience fragmentation. This has favoured the development of non-conventional advertising formats. This study provides empirical evidence for the theoretical development. This investigation analyzes the recall generated by four non-conventional advertising formats in a real environment: short programme (branded content), television sponsorship, internal and external telepromotion versus the more conventional spot. The methodology employed has integrated secondary data with primary data from computer assisted telephone interviewing (CATI) were performed ad-hoc on a sample of 2000 individuals, aged 16 to 65, representative of the total television audience. Our findings show that non-conventional advertising formats are more effective at a cognitive level, as they generate higher levels of both unaided and aided recall, in all analyzed formats when compared to the spot.
Resumo:
With growing demand for liquefied natural gas (LNG) and liquid transportation fuels, and concerns about climate change and causes of greenhouse gas emissions, this master’s thesis introduces a new value chain design for LNG and transportation fuels and respective fundamental business cases based on hybrid PV-Wind power plants. The value chains are composed of renewable electricity (RE) converted by power-to-gas (PtG), gas-to-liquids (GtL) or power-to-liquids (PtL) facilities into SNG (which is finally liquefied into LNG) or synthetic liquid fuels, mainly diesel, respectively. The RE-LNG or RE-diesel are drop-in fuels to the current energy system and can be traded everywhere in the world. The calculations for the hybrid PV-Wind power plants, electrolysis, methanation (H2tSNG), hydrogen-to-liquids (H2tL), GtL and LNG value chain are performed based on both annual full load hours (FLh) and hourly analysis. Results show that the proposed RE-LNG produced in Patagonia, as the study case, is competitive with conventional LNG in Japan for crude oil prices within a minimum price range of about 87 - 145 USD/barrel (20 – 26 USD/MBtu of LNG production cost) and the proposed RE-diesel is competitive with conventional diesel in the European Union (EU) for crude oil prices within a minimum price range of about 79 - 135 USD/barrel (0.44 – 0.75 €/l of diesel production cost), depending on the chosen specific value chain and assumptions for cost of capital, available oxygen sales and CO2 emission costs. RE-LNG or RE-diesel could become competitive with conventional fuels from an economic perspective, while removing environmental concerns. The RE-PtX value chain needs to be located at the best complementing solar and wind sites in the world combined with a de-risking strategy. This could be an opportunity for many countries to satisfy their fuel demand locally. It is also a specific business case for countries with excellent solar and wind resources to export carbon-neutral hydrocarbons, when the decrease in production cost is considerably more than the shipping cost. This is a unique opportunity to export carbon-neutral hydrocarbons around the world where the environmental limitations on conventional hydrocarbons are getting tighter.
Resumo:
Hybrid halide perovskites have emerged as promising active constituents of next generation solution processable optoelectronic devices. During their assembling process, perovskite components undergo very complex dynamic equilibria starting in solution and progressing throughout film formation. Finding a methodology to control and affect these equilibria, responsible for the unique morphological diversity observed in perovskite films, constitutes a fundamental step towards a reproducible material processability. Here we propose the exploitation of polymer matrices as cooperative assembling components of novel perovskite CH3NH3PbI3 : polymer composites, in which the control of the chemical interactions in solution allows a predictable tuning of the final film morphology. We reveal that the nature of the interactions between perovskite precursors and polymer functional groups, probed by Nuclear Magnetic Resonance (NMR) spectroscopy and Dynamic Light Scattering (DLS) techniques, allows the control of aggregates in solution whose characteristics are strictly maintained in the solid film, and permits the formation of nanostructures that are inaccessible to conventional perovskite depositions. These results demonstrate how the fundamental chemistry of perovskite precursors in solution has a paramount influence on controlling and monitoring the final morphology of CH3NH3PbI3 (MAPbI3) thin films, foreseeing the possibility of designing perovskite : polymer composites targeting diverse optoelectronic applications.
Resumo:
The technical, social and economic issues of electronic publishing are examined by using as a case study the evolution of the journal Electronic Publishing Origination, Dissemination and Design (EP-odd) which is published by John Wiley Ltd. The journal is a `hybrid' one, in the sense that it appears in both electronic and paper form, and is now in its ninth year of publication. The author of this paper is the journal's Editor-in- Chief. The first eight volumes of EP-odd have been distributed via the conventional subscription method but a new method, from volume 9 onwards, is now under discussion whereby accepted papers will first be published on the EP-odd web site, with the printed version appearing later as a once-per-volume operation. Later sections of the paper lead on from the particular experiences with EP-odd into a more general discussion of peer review and the acceptability of e-journals in universities, the changing role of libraries, the sustainability of traditional subscription pricing and the prospects for `per paper' sales as micro-payment technologies become available.
Resumo:
The analysis of steel and composite frames has traditionally been carried out by idealizing beam-to-column connections as either rigid or pinned. Although some advanced analysis methods have been proposed to account for semi-rigid connections, the performance of these methods strongly depends on the proper modeling of connection behavior. The primary challenge of modeling beam-to-column connections is their inelastic response and continuously varying stiffness, strength, and ductility. In this dissertation, two distinct approaches—mathematical models and informational models—are proposed to account for the complex hysteretic behavior of beam-to-column connections. The performance of the two approaches is examined and is then followed by a discussion of their merits and deficiencies. To capitalize on the merits of both mathematical and informational representations, a new approach, a hybrid modeling framework, is developed and demonstrated through modeling beam-to-column connections. Component-based modeling is a compromise spanning two extremes in the field of mathematical modeling: simplified global models and finite element models. In the component-based modeling of angle connections, the five critical components of excessive deformation are identified. Constitutive relationships of angles, column panel zones, and contact between angles and column flanges, are derived by using only material and geometric properties and theoretical mechanics considerations. Those of slip and bolt hole ovalization are simplified by empirically-suggested mathematical representation and expert opinions. A mathematical model is then assembled as a macro-element by combining rigid bars and springs that represent the constitutive relationship of components. Lastly, the moment-rotation curves of the mathematical models are compared with those of experimental tests. In the case of a top-and-seat angle connection with double web angles, a pinched hysteretic response is predicted quite well by complete mechanical models, which take advantage of only material and geometric properties. On the other hand, to exhibit the highly pinched behavior of a top-and-seat angle connection without web angles, a mathematical model requires components of slip and bolt hole ovalization, which are more amenable to informational modeling. An alternative method is informational modeling, which constitutes a fundamental shift from mathematical equations to data that contain the required information about underlying mechanics. The information is extracted from observed data and stored in neural networks. Two different training data sets, analytically-generated and experimental data, are tested to examine the performance of informational models. Both informational models show acceptable agreement with the moment-rotation curves of the experiments. Adding a degradation parameter improves the informational models when modeling highly pinched hysteretic behavior. However, informational models cannot represent the contribution of individual components and therefore do not provide an insight into the underlying mechanics of components. In this study, a new hybrid modeling framework is proposed. In the hybrid framework, a conventional mathematical model is complemented by the informational methods. The basic premise of the proposed hybrid methodology is that not all features of system response are amenable to mathematical modeling, hence considering informational alternatives. This may be because (i) the underlying theory is not available or not sufficiently developed, or (ii) the existing theory is too complex and therefore not suitable for modeling within building frame analysis. The role of informational methods is to model aspects that the mathematical model leaves out. Autoprogressive algorithm and self-learning simulation extract the missing aspects from a system response. In a hybrid framework, experimental data is an integral part of modeling, rather than being used strictly for validation processes. The potential of the hybrid methodology is illustrated through modeling complex hysteretic behavior of beam-to-column connections. Mechanics-based components of deformation such as angles, flange-plates, and column panel zone, are idealized to a mathematical model by using a complete mechanical approach. Although the mathematical model represents envelope curves in terms of initial stiffness and yielding strength, it is not capable of capturing the pinching effects. Pinching is caused mainly by separation between angles and column flanges as well as slip between angles/flange-plates and beam flanges. These components of deformation are suitable for informational modeling. Finally, the moment-rotation curves of the hybrid models are validated with those of the experimental tests. The comparison shows that the hybrid models are capable of representing the highly pinched hysteretic behavior of beam-to-column connections. In addition, the developed hybrid model is successfully used to predict the behavior of a newly-designed connection.
Resumo:
This study presents two novel methods for treating important environmental contaminants from two different wastewater streams. One process utilizes the kinetic advantages and reliability of ion exchanging clinoptilolite in combination with biological treatment to remove ammonium from municipal sewage. A second process, HAMBgR (Hybrid Adsorption Membrane Biological Reactor), combines both ion exchange resin and bacteria into a single reactor to treat perchlorate contaminated waters. Combining physicochemical adsorptive treatment with biological treatment can provide synergistic benefits to the overall removal processes. Ion exchange removal solves some of the common operational reliability limitations of biological treatment, like slow response to environmental changes and leaching. Biological activity can in turn help reduce the economic and environmental challenges of ion exchange processes, like regenerant cost and brine disposal. The second section of this study presents continuous flow column experiments, used to demonstrate the ability of clinoptilolite to remove wastewater ammonium, as well as the effectiveness of salt regeneration using highly concentrated sea salt solutions. The working capacity of clinoptilolite more than doubled over the first few loading cycles, while regeneration recovered more than 98% of ammonium. Using the regenerant brine for subsequent halotolerant algae growth allowed for its repeated use, which could lead to cost savings and production of valuable algal biomass. The algae were able to uptake all ammonium in solution, and the brine was able to be used again with no loss in regeneration efficiency. This process has significant advantages over conventional biological nitrification; shorter retention times, wider range of operational conditions, and higher quality effluent free of nitrate. Also, since the clinoptilolite is continually regenerated and the regenerant is rejuvenated by algae, overall input costs are expected to be low. The third section of this study introduces the HAMBgR process for the elimination of perchlorate and presents batch isotherm experiments and pilot reactor tests. Results showed that a variety of ion-exchange resins can be effectively and repeatedly regenerated biologically, and maintain an acceptable working capacity. The presence of an adsorbent in the HAMBgR process improved bioreactor performance during operational fluctuations by providing a physicochemical backup to the biological process. Pilot reactor tests showed that the HAMBgR process reduced effluent perchlorate spikes by up to 97% in comparison to a conventional membrane bio-reactor (MBR) that was subject to sudden changes in influent conditions. Also, the HAMBgR process stimulated biological activity and lead to higher biomass concentrations during increased contaminant loading conditions. Conventional MBR systems can be converted into HAMBgR’s at a low cost, easily justifiable by the realized benefits. The concepts employed in the HAMBgR process can be adapted to treat other target contaminants, not just perchlorate.
Resumo:
Background: Gene expression studies are a prerequisite for understanding the biological function of genes. Because of its high sensitivity and easy use, quantitative PCR (qPCR) has become the gold standard for gene expression quantification. To normalise qPCR measurements between samples, the most prominent technique is the use of stably expressed endogenous control genes, the so called reference genes. However, recent studies show there is no universal reference gene for all biological questions. Roses are important ornamental plants for which there has been no evaluation of useful reference genes for gene expression studies. Results: We used three different algorithms (BestKeeper, geNorm and NormFinder) to validate the expression stability of nine candidate reference genes in different rose tissues from three different genotypes of Rosa hybrida and in leaves treated with various stress factors. The candidate genes comprised the classical "housekeeping genes" (Actin, EF-1α, GAPDH, Tubulin and Ubiquitin), and genes showing stable expression in studies in Arabidopsis (PP2A, SAND, TIP and UBC). The programs identified no single gene that showed stable expression under all of the conditions tested, and the individual rankings of the genes differed between the algorithms. Nevertheless the new candidate genes, specifically, PP2A and UBC, were ranked higher as compared to the other traditional reference genes. In general, Tubulin showed the most variable expression and should be avoided as a reference gene. Conclusions: Reference genes evaluated as suitable in experiments with Arabidopsis thaliana were stably expressed in roses under various experimental conditions. In most cases, these genes outperformed conventional reference genes, such as EF1-α and Tubulin. We identified PP2A, SAND and UBC as suitable reference genes, which in different combinations may be used for normalisation in expression analyses via qPCR for different rose tissues and stress treatments. However, the vast genetic variation found within the genus Rosa, including differences in ploidy levels, might also influence expression stability of reference genes, so that future research should also consider different genotypes and ploidy levels.
Resumo:
Conventional vehicles are creating pollution problems, global warming and the extinction of high density fuels. To address these problems, automotive companies and universities are researching on hybrid electric vehicles where two different power devices are used to propel a vehicle. This research studies the development and testing of a dynamic model for Prius 2010 Hybrid Synergy Drive (HSD), a power-split device. The device was modeled and integrated with a hybrid vehicle model. To add an electric only mode for vehicle propulsion, the hybrid synergy drive was modified by adding a clutch to carrier 1. The performance of the integrated vehicle model was tested with UDDS drive cycle using rule-based control strategy. The dSPACE Hardware-In-the-Loop (HIL) simulator was used for HIL simulation test. The HIL simulation result shows that the integration of developed HSD dynamic model with a hybrid vehicle model was successful. The HSD model was able to split power and isolate engine speed from vehicle speed in hybrid mode.
Resumo:
The cultivation of hybrid rice is a technology that allows for an increase in grain yield of 30% relative to the grain yield of conventional cultivars. However, the main challenge for this technology is related to seed production, which has high production costs and low seed yields. Therefore, agronomic techniques that could enhance flowering synchrony of parental lines in the field are essential for an efficient production system of hybrid rice seeds. The objective of this work was to study the effects of sowing depth, plant density and fertilization with nitrogen or phosphorus as potential techniques to increase the pollen availability in the field and, consequently, the flowering synchrony between parental lines in the production of hybrid rice seeds. The experiments were conducted during two growing seasons in the Central Region of Brazil. All of the experiments were conducted as a randomized complete block in a split plot scheme; however, the experiment with P fertilization had a factorial design. Our research allow inferring that nitrogen fertilization technique applied to the soil or foliar at the time of panicle differentiation does not affect the time of onset of flowering of rice varieties INTA Puitá CL and L106R, which are potential R lines for the production of hybrid rice. Agronomic techniques of variation in sowing depth, seeding rate and the phosphate fertilization affect the time of onset of flowering from 10 to 19 degree-days, which could represent two days in the crop cycle, for the line L106R. Such techniques constitute potential alternatives for use in hybrid rice seed production systems and could be applied in alternated blocks of R lines in the field to obtain longer periods of pollen availability in the field.
Resumo:
Against a backdrop of rapidly increasing worldwide population and growing energy demand, the development of renewable energy technologies has become of primary importance in the effort to reduce greenhouse gas emissions. However, it is often technically and economically infeasible to transport discontinuous renewable electricity for long distances to the shore. Another shortcoming of non-programmable renewable power is its integration into the onshore grid without affecting the dispatching process. On the other hand, the offshore oil & gas industry is striving to reduce overall carbon footprint from onsite power generators and limiting large expenses associated to carrying electricity from remote offshore facilities. Furthermore, the increased complexity and expansion towards challenging areas of offshore hydrocarbons operations call for higher attention to safety and environmental protection issues from major accident hazards. Innovative hybrid energy systems, as Power-to-Gas (P2G), Power-to-Liquid (P2L) and Gas-to-Power (G2P) options, implemented at offshore locations, would offer the opportunity to overcome challenges of both renewable and oil & gas sectors. This study aims at the development of systematic methodologies based on proper sustainability and safety performance indicators supporting the choice of P2G, P2L and G2P hybrid energy options for offshore green projects in early design phases. An in-depth analysis of the different offshore hybrid strategies was performed. The literature reviews on existing methods proposing metrics to assess sustainability of hybrid energy systems, inherent safety of process routes in conceptual design stage and environmental protection of installations from oil and chemical accidental spills were carried out. To fill the gaps, a suite of specific decision-making methodologies was developed, based on representative multi-criteria indicators addressing technical, economic, environmental and societal aspects of alternative options. A set of five case-studies was defined, covering different offshore scenarios of concern, to provide an assessment of the effectiveness and value of the developed tools.
Resumo:
Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies.
Resumo:
Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure.
Resumo:
The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.