1000 resultados para COMPLEX DIPTERA
Resumo:
During studies on the dynamics of malaria transmission in Marajó Island, State of Pará, Brazil, Galvão & Damasceno (1942) collected a single specimen of a new species that they named Anopheles (Nyssorhynchus) marajoara Galvão & Damasceno, 1942. Now, examining genitalia slide associated to the holotype, we observed that the ventral claspette of the male genitalia is distinct from those of all other species of the Argyritarsis Section and consequently from members of the complex Anopheles albitarsis Lynch Arribalzaga, 1878. The male genitalia of the slide belong to a specimen of Anopheles aquasalis Curry, 1932, nevertheless, it was originally labeled as Anopheles marajoara. To solve this problem, we are setting aside the male genitalia slide associated with the holotype of Anopheles marajoara and excluding it from the type material. Illustrations of the male genitalia and adult male are included.
Resumo:
We examined whether, like many parasite-host systems of coevolution, a group of obligate parasitic bat flies (Trichobius phyllostomae Kessel and related species) cospeciate with their hosts. We first did a cladistic analysis of the T. phyllostomae group and combined that analysis with a phylogenetic hypothesis from the literature for the Stenodermatinae bats. The cladistic analysis included, as outgroups, one species from each morphological group and complex of Trichobius Gervais, and one species from the following genera: Paratrichobius Miranda-Ribeiro, Megistopoda Macquart, Megistapophysys Dick & Wenzel, Neotrichobius Wenzel & Aitken, Speiseria Kessel and Strebla Wiedemann. The cladogram was rooted with a species of Strebla in the subfamily Streblinae. One cladogram was obtained and which found Trichobius to be polyphyletic. The phylogenetic hypothesis as follows: (Paratrichobius, (Neotrichobius, (Megistopoda, Megistapophysis)))) is the sister-group of the phyllostomae group and the following relationships within the ingroup, (((T. vampyropis Wenzel, Trichobius sp. 2) ((T. hispidus Wenzel, T. petersoni Wenzel) ((Trichobius sp. 1 (T. phyllostomae, T. brennani Wenzel))))). When we compared phylogenies through historical association analyses, cospeciation was uncommon, while host-switching was more common and better explained the association between the phyllostomae group and their bat hosts.
Resumo:
Nyssomyia whitmani (Antunes and Coutinho, 1939) has been considered as a complex of cryptic species, and some of the populations of this complex plays an important role in the transmission of Leishmania spp. in Brazil. The present study reports the biological aspects concerning the productivity out of eggs and the development time of the descendants of females obtained in Dourados municipality, Mato Grosso do Sul state. The females were captured with modified electric aspirators, fed in hamsters and further individualized in containers for breeding. At the insectary, temperature and relative humidity were maintained on average of 24.5 °C and 67.3%, respectively. From 944 females 3737 eggs were obtained, 748 (20.0%) evolved to the stage of larvae, and 93 (12.4%) of these reached adult stage. The life cycle lasted 80.6 days and the last larval instar was the longest. The use of a higher protein diet revealed a significant improvement in larval development.
Resumo:
Black flies are opportunistic sugar-feeders. They take sugar meals from Homopteran honeydew secretions or plant nectars, depending on availability. Homopteran honeydew secretions contain both simple and complex carbohydrates while plant nectars contain primarily simple carbohydrates. In order to determine whether honeydew secretions offer more energy than plant nectars to their insect visitors a study of wild-caught black flies was undertaken in Algonquin Provincial Park, Canada during the spring of 1 998 and 1 999. It was hypothesized that female black flies maintained on honeydew sugars will survive longer, produce more eggs and have a greater parasite vectoring potential than those maintained on artificial nectar or distilled water. Results demonstrated that: (1) host-seeking female Prosimulimfuscum/mixtum and Simulium venustum maintained on artificial honeydew did not survive longer than those maintained on artificial nectar when fed ad libitum; (2) fiiUy engorged S. venustum and Simulium rugglesi maintained on artificial honeydew did not produce more eggs than those maintained on artificial nectar when fed ad libitum; and (3) S. rugglesi did not have a greater vectoring potential of Leucocytozoon simondi when maintained on artificial honeydew as opposed to artificial nectar when fed ad libitum. However, all flies maintained on the two sugars (artificial honeydew and artificial nectar) survived longer, produce more eggs and had greater vectoring potential than those maintained on distilled water alone.
Resumo:
Species of the genus Culex Linnaeus have been incriminated as the main vectors of lymphatic filariases and are important vectors of arboviruses, including West Nile virus. Sequences corresponding to a fragment of 478 bp of the cytochrome c oxidase subunit I gene, which includes part of the barcode region, of 37 individuals of 17 species of genus Culex were generated to establish relationships among five subgenera, Culex, Phenacomyia, Melanoconion, Microculex, and Carrollia, and one species of the genus Lutzia that occurs in Brazil. Bayesian methods were employed for the phylogenetic analyses. Results of sequence comparisons showed that individuals identified as Culex dolosus, Culex mollis, and Culex imitator possess high intraspecific divergence (3.1, 2.3, and 3.5%, respectively) when using the Kimura two parameters model. These differences were associated either with distinct morphological characteristics of the male genitalia or larval and pupal stages, suggesting that these may represent species complexes. The Bayesian topology suggested that the genus and subgenus Culex are paraphyletic relative to Lutzia and Phenacomyia, respectively. The cytochrome c oxidase subunit I sequences may be a useful tool to both estimate phylogenetic relationships and identify morphologically similar species of the genus Culex.
Resumo:
Background: American cutaneous leishmaniasis (ACL) is a re-emerging disease in the state of Sao Paulo, Brazil. It is important to understand both the vector and disease distribution to help design control strategies. As an initial step in applying geographic information systems (GIS) and remote sensing (RS) tools to map disease-risk, the objectives of the present work were to: (i) produce a single database of species distributions of the sand fly vectors in the state of Sao Paulo, (ii) create combined distributional maps of both the incidence of ACL and its sand fly vectors, and (iii) thereby provide individual municipalities with a source of reference material for work carried out in their area. Results: A database containing 910 individual records of sand fly occurrence in the state of Sao Paulo, from 37 different sources, was compiled. These records date from between 1943 to 2009, and describe the presence of at least one of the six incriminated or suspected sand fly vector species in 183/645 (28.4%) municipalities. For the remaining 462 (71.6%) municipalities, we were unable to locate records of any of the six incriminated or suspected sand fly vector species (Nyssomyia intermedia, N. neivai, N. whitmani, Pintomyia fischeri, P. pessoai and Migonemyia migonei). The distribution of each of the six incriminated or suspected vector species of ACL in the state of Sao Paulo were individually mapped and overlaid on the incidence of ACL for the period 1993 to 1995 and 1998 to 2007. Overall, the maps reveal that the six sand fly vector species analyzed have unique and heterogeneous, although often overlapping, distributions. Several sand fly species - Nyssomyia intermedia and N. neivai - are highly localized, while the other sand fly species - N. whitmani, M. migonei, P. fischeri and P. pessoai - are much more broadly distributed. ACL has been reported in 160/183 (87.4%) of the municipalities with records for at least one of the six incriminated or suspected sand fly vector species, while there are no records of any of these sand fly species in 318/478 (66.5%) municipalities with ACL. Conclusions: The maps produced in this work provide basic data on the distribution of the six incriminated or suspected sand fly vectors of ACL in the state of Sao Paulo, and highlight the complex and geographically heterogeneous pattern of ACL transmission in the region. Further studies are required to clarify the role of each of the six suspected sand fly vector species in different regions of the state of Sao Paulo, especially in the majority of municipalities where ACL is present but sand fly vectors have not yet been identified.
Resumo:
The present findings suggest that Anopheles (Kerteszia) homunculus may comprise more than one species. The rDNA ITS2 sequence data corroborate the presence of An. homunculus l.s. in Mata Atlantica, southern Brazil, and suggest that specimens from Trinidad may belong to an unnamed morphologically similar species. There is a need for additional studies to establish the geographical distribution of An. homunculus l.s. in continental South America and in Trinidad, especially in southern Mata Atlantica, Brazil.
Resumo:
The characterisation of sequences at chromosome ends of Rhynchosciara americana was continued with the screening of a genomic library using as a probe a short repeat identified in a previous report (M-22, 22 bp) which was found to be specific for noncentromeric termini of this species. Simple repeats, complex tandem and apparently dispersed repeats were present in the genomic clones analysed. Repetitive sequences do not define individual chromosome tips as they were found in all noncentromeric ends. A novel and unusually short tandem repeat type for dipteran chromosome ends (named M-16) composed of 16 nucleotides and frequently associated with M-22 arrays was characterised in this work. Islands of M-16 and M-22 tandem repeats were found in all the genomic clones analysed. Individual probes representative of each repetitive element hybridised not only to all noncentromeric ends of R. americana chromosomes but also to inter-telomeric bridges. This contrasted with the other repeat types which displayed sub-telomeric localisation as seen by double detection of hybridised probe and telomeric reverse transcriptase. Some stretches composed of M-16 and M-22 tandem repeats localised in different regions of the analysed genomic clones were either identical or showed sequence similarity that was unexpectedly higher than the mean sequence similarity observed among repeats within each of their tandem arrays. The occurrence of segmental duplications, as deduced by sequence analyses involving the two repeats that appeared to reach chromosome ends, might indicate the involvement of this type of duplication process in the chromosome end maintenance in this species.
Resumo:
Antibodies to specific nucleic acid conformations are amongst the methods that have allowed the study of non-canonical (Watson-Crick) DNA structures in higher organisms. In this work, the structural limitations for the immunological detection of DNA.RNA hybrid duplexes were examined using specific RNA homopolymers as probes for homopolymer polydeoxyadenylic acid (poly(dA)).polydeoxythymidylic acid (poly(dT))-rich regions of Rhynchosciara americana (Diptera: Sciaridae) chromosomes. Anti-DNA.RNA duplexes did not react with the complex formed between chromosomal poly(dA) and exogenous polyuridylic acid (poly(rU)). Additionally, poly(rU) prevented the detection of polyadenylic acid.poly(dT) hybrid duplexes preformed in situ. These results raised the possibility that three-stranded structures rather than duplexes were formed in chromosomal sites. To test this hypothesis, the specificity of antibodies to triple-helical nucleic acids was reassessed employing distinct nucleic acid configurations. These antibodies were raised to the poly(dA).poly(rU).poly(rU) complex and have been used here for the first time in immunocytochemistry. Anti-triplex antibodies recognised the complex poly(dA).poly(rU).poly(rU) assembled with poly(rU) in poly(dA).poly(dT)-rich homopolymer regions of R. americana chromosomes. The antibodies could not detect short triplex stretches, suggesting the existence of constraints for triple-helix detection, probably related to triplex tract length. In addition, anti-poly(dA).poly(rU).poly(rU) antibodies reacted with the pericentric heterochromatin of RNase-treated polytene chromosomes of R. americana and Drosophila melanogaster. In apparent agreement with data obtained in cell types from other organisms, the results of this work suggest that significant triple-helix DNA extensions can be formed in pericentric regions of these species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
During mitotic and meiotic divisions in Dermatobia hominis spermatogenesis, the germ cells stay interlinked by cytoplasm, bridges as a result of incomplete cytokinesis. By the end of each division, cytoplasmic bridges flow to the center of the cyst, forming a complex, called the fusoma. During meiotic prophase I, spermatocytes I present desmosome-like junctions and meiotic cytoplasmic bridges. At the beginning of spermiogenesis, the fusoma moves to the future caudal end of the cyst, and at this time the early spermatids are linked by desmosome-like junctions. Throughout spermiogensis, new and sometimes broad cytoplasmic bridges are formed among spermatids at times making them share cytoplasm. In this case the individualization of cells is assured by the presence of smooth cisternae that outline then structures The more differentiated spermatids have in addition to narrow cytoplasmic bridges, plasmic membranes junctions. By the end of spermiogenesis the excess cytoplasmic mass is eliminated leading to spermatid individualization. Desmosome-like junctions of spermatocytes I and early spermatids appear during the fusoma readjustment and segregations; on the other hand, plasmic membrane junctions appear in differentiating spermatids and are eliminated along with the cytoplasmic excess. These circumstances suggest that belt desmosome-like and plasmic membrane junctions are involved in the maintenance of the relative positions of male germ cells in D. hominis while they are inside the cysts. © 1996 Wiley-Liss, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Anofelinos membros de complexos de espécies crípticas podem exibir diferenças comportamentais, de susceptibilidade a infecção malárica, e resistência a inseticidas. Assim, a identificação de espécies vetoras tem relevância epidemiológica, o que nem sempre é possível por critérios morfológicos. Métodos alternativos têm sido empregados para tal, como os que analisam regiões altamente conservadas do DNA ribossômico, variável entre as espécies, conhecidas como espaçadoras internas transcritas (ITS). Considera-se atualmente que o complexo Anopheles c seja composto por seis espécies: An. albitarsis s.s., An. oryzalimnetes, An. albitarsis F, An. marajoara, An. deaneorum, e An. janconnae. Destas, pelo menos as três últimas são incriminadas como vetores de malária na Amazônia brasileira. O objetivo deste estudo foi realizar identificação molecular de espécies do complexo An. albitarsis, por análise da seqüências do ITS2 do rDNA, com vistas a analisar sua importância na transmissão de malária nos municípios de Macapá, Amapá e Peixe-Boi, Pará, inclusive investigando pela primeira vez a ocorrência do An. albitarsis F nestas duas áreas epidemiologicamente distintas: a primeira com histórico de alto risco de transmissão de malária e a segunda não. O estudo foi realizado entre janeiro de 2009 e abril de 2010, e consistiu de capturas de anofelinos de 12 horas de duração (ecostofase) no peridomicílio. Todas as fêmeas coletadas foram morfologicamente identificadas e apenas os An. albitarsis s.l. tiveram cabeça e tórax separadas para análise da infecção natural por ELISA; ovários para análise de paridade e patas, asas e carcaça para identificação molecular. Em Macapá foram realizadas seis coletas, obtendo-se um total de 584 anofelinos, sendo 366 An. albitarsis s.l. (62,7%), 167 An. darlingi (28,6%), 33 An. triannulatus s.l (5,6%), 15 An. braziliensis (2,6%) e 3 An. nuneztovari (0,5%). Pela PCR foi possível visualizar a banda específica de An. marajoara em 320 espécimes dos An. albitarsis s.l testados. Do restante, 33 foram negativos e 13 amplificaram um fragmento de ~490 pb nos iniciadores empregados, não permitindo chegar ao diagnóstico específico. O An. marajoara apresentou características biológicas e comportamentais que ratificam sua importância epidemiológica na transmissão de malária em Macapá, tais como: ser a espécie mais prevalente, com maior proporção de fêmeas paridas (73,0%), e portanto com maiores chances de se infectarem com o plasmódio, ocorrer tanto na estação menos quanto na mais chuvosa, e apresentar atividade hematofágica durante toda a ecostofase, alem disso, foi encontrado naturalmente infectado por P. vivax e P. falciparum (taxa de infecção natural de 3,1%). Em Peixe-Boi, foram capturados 43 anofelinos: An. triannulatus s.l (20 espécimes, 46,5 %), An. albitarsis s.l. (13: 30,2 %), An. darlingi (8: 18,6%), e An. nuneztovari (2: 4,7%). Todos os An. albitarsis s.l. coletados foram identificados pela ITS2 como An. oryzalimnetes. Nenhum deles foi encontrado infectado pelos plasmódios testados, e a maioria das fêmeas era parida (84,6%). São necessários levantamentos entomológicos sistemáticos que analisem a importância deste anofelino na transmissão de malária na cidade. O An. albitarsis F não foi encontrado nas duas áreas estudadas. Nossos resultados contribuem para o entendimento da epidemiologia da malária na região Amazônica brasileira.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)