985 resultados para COLLOIDAL STABILITY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A concise pressure controlled isothermal heating vertical deposition (PCIHVD) method is developed, which provides an optimal growing condition with better stability and reproducibility for fabricating photonic crystals (PCs) without the limitation of colloidal sphere materials and sizes. High quality PCs are fabricated with PCIHVD from polystyrene spheres with diameters ranging from 200 nm to 1 mu m. The deep photonic band gap and steep photonic band edge of the samples are most favorable for realizing ultrafast optical devices, photonic chips, and communications. This method makes a meaningful advance in the quality and diversity of PCs and greatly promotes their wide applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly of proteins and peptides into polymeric amyloid fibrils is a process that has important implications ranging from the understanding of protein misfolding disorders to the discovery of novel nanobiomaterials. In this study, we probe the stability of fibrils prepared at pH 2.0 and composed of the protein insulin by manipulating electrostatic interactions within the fibril architecture. We demonstrate that strong electrostatic repulsion is sufficient to disrupt the hydrogen-bonded, cross-β network that links insulin molecules and ultimately results in fibril dissociation. The extent of this dissociation correlates well with predictions for colloidal models considering the net global charge of the polypeptide chain, although the kinetics of the process is regulated by the charge state of a single amino acid. We found the fibrils to be maximally stable under their formation conditions. Partial disruption of the cross-β network under conditions where the fibrils remain intact leads to a reduction in their stability. Together, these results support the contention that a major determinant of amyloid stability stems from the interactions in the structured core, and show how the control of electrostatic interactions can be used to characterize the factors that modulate fibril stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the macroscopic drying patterns of aqueous suspensions of colloidal silica spheres. It was found that convection strength can influence pattern formation. Uniformed films are obtained at weaker convection strength. In addition, we make clear that it is not reasonable to discuss individually the effect of temperature and humidity on the colloid self-assembly. The physical mechanism is that these factors have relationship with the evaporation rate, which can affect the convection strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental data are presented to show the influence of asphaltenes and resins on the stability and demulsification of emulsions. It was found that emulsion stability was related to the concentrations of the asphaltene and resin in the crude oil, and the state of dispersion of the asphaltenes and resins (molecular vs colloidal) was critical to the strength or rigidity of interfacial films and hence to the stability of the emulsions. Based on this research, a possible emulsion minimization approach in refineries, which can be implemented utilizing microwave radiation, is also suggested. Comparing with conventional heating, microwave radiation can enhance the demulsification rate by an order of magnitude. The demulsification efficiency reaches 100% in a very short time under microwave radiation. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reversibly tunable colloidal photonic crystal between two stop bands was realized by a liquid-solid phase transition of liquid infiltrated into the air voids of silica opals. The difference of the peak wavelengths of the two stop bands was dependent on the diameter of the silica opals and the difference of the refractive index of the filled solvent between the solid and liquid state. The reversibly tunable photonic crystals have good stability and reproducibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method to fabricate a hydrogen peroxide sensor was developed by immobilizing horseradish peroxidase (HRP) on colloidal An modified ITO conductive glass support. The cleaned glass support was modified with (3-aminopropyl)trimethoxysilane (APTMS) first to yield an interface for the assembly of colloidal An. Then 15 nm colloidal Au particles were chemisorbed onto the amine groups of the APTMS. Finally, HRP was adsorbed onto the surface of the colloidal An. The immobilized HRP displayed excellent electrocatalytical response to the reduction of hydrogen peroxide. The performance and factors influencing the resulted biosensor were studied in detail. The resulted biosensor exhibited fast amperometric response (within 5 s) to H2O2. The detection limit of the biosensor was 8.0 mumol l(-1), and linear range was from 20.0 mumol l(-1) to 8.0 mmol l(-1). Furthermore, the resulted biosensor exhibited high sensitivity, good reproducibility, and long-term stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential of permeation liquid membrane (PLM) to obtain dynamic metal speciation information for colloidal complexes is evaluated by measurements of lead(II) and copper(II) complexation by carboxyl modified latex nanospheres of different radii (15, 35, 40 and 65 nm). The results are compared with those obtained by a well characterized technique: stripping chronopotentiometry at scanned deposition potential (SSCP). Under the PLM conditions employed, and for large particles or macromolecular ligands, membrane diffusion is the rate-limiting step. That is, the flux is proportional to the free metal ion concentration with only a small contribution from labile complexes. In the absence of ligand aggregation in the PLM channels, good agreement was obtained between the stability constants determined by PLM and SSCP for both metals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloidal gas aphrons (CGA) have previously been defined as surfactant stabilized gas microbubbles and characterized for a number of surfactants in terms of stability, gas holdup and bubble size even though there is no conclusive evidence of their structure (that is, orientation of surfactant molecules at the gas–liquid interface, thickness of gas–liquid interface, and/or number of surfactant layers). Knowledge of the structure would enable us to use these dispersions more efficiently for their diverse applications (such as for removal of dyes, recovery of proteins, and enhancement of mass transfer in bioreactors). This study investigates dispersion and structural features of CGA utilizing a range of novel predictive (for prediction of aphron size and drainage rate) and experimental (electron microscopy and X-ray diffraction) methods. Results indicate structural differences between foams and CGA, which may have been caused by a multilayer structure of the latter as suggested by the electron and X-ray diffraction analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a worldwide interest in the development of processes for producing colorants from natural sources. Microorganisms provide an alternative source of natural colorants produced by cultivation technology and extracted from the fermented broth. The aim of the present work was to study the recovery of red colorants from the fermented broth of Talaromyces amestolkiae using the technique of colloidal gas aphrons (CGA) comprising surfactant-stabilized microbubbles. Preliminary experiments were performed to evaluate the red colorants’ solubility in different organic solvents, octanol/water partitioning, and their stability in surfactant solutions, namely hexadecyl trimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and polyoxyethylenesorbitan monolaurate (Tween 20), which are cationic, anionic and nonionic surfactants, respectively. The first recovery experiments were carried out using CGA generated by these surfactants at different volumetric ratios (VR, 3–18). Subsequently, two different approaches to generate CGA were investigated at VR values of 6 and 12: the first involved the use of CTAB at pH 6.9–10.0, and the second involved the use of Tween 20 using red colorants partially dissolved in ethanol and Tween 20. The characterization results showed that red colorants have a hydrophilic nature. The highest recoveries were obtained with Tween 20 (78%) and CTAB (70%). These results demonstrated that the recovery of the colorants was driven by both electrostatic and hydrophobic interactions. The VR was found to be an important operating parameter and at VR 12 with CTAB (at pH 9) maximum recovery, partitioning coefficient (K = 5.39) and selectivity in relation to protein and sugar (SP = 3.75 and SS = 7.20 respectively) were achieved. Furthermore, with Tween 20, the separation was driven mainly by hydrophobic interactions. Overall CGA show promise for the recovery of red colorants from a fermented broth. Although better results were obtained with CTAB than with Tween 20 the latter may be more suitable for some application due to its lower toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper demonstrates the application of thermal analysis in compatibility and stability studies between it ACE inhibitor (enalapril maleate) and excipients. The results have helped to elucidate the reason of a stability problem observed (luring the storage of enalapril maleate tablets. Incompatibility between enalapril maleate and colloidal silicon dioxide was detected. Besides, it was confirmed that the reaction between enalapril maleate and NaHCO3 increases the thermal stability of the drug. This Study Supports the importance of using thermoanalytical methods in the development of pharmaceuticals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pentacarbonyliron was oxidized with H2O2, in organic solvents, to give colloidal sols. The aqueous-ethanolic sol is highly stable and undergoes thermally-reversible coagulation. Its solid phase was found to be a non-crystalline Fe (III) hydroxoacetate which is transformed to α-Fe2O3 when heated to 300°C. Iron-bound acetate groups are assumed to have a major role in the sol stability, by preserving the amorphous solid phase. Dry hydroxoacetate particles were heated under vacuum; scanning electron microscopy revealed that these particles coalesce and grow, as in a sintering process but at low temperatures (100-250°). © 1987.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent SnO2 gels were obtained from SnCl4 aqueous solution. The sol formation from tin oxihydroxy peptization in different concentrations and by electrolyte addition in solution was measured. It was verified that the residual presence of chloride ions compromises the colloidal system stability. The sol-gel transition was investigated as a function of the quantity of solid particles in the aqueous environment and of aging time at 60°C by infrared spectroscopy and rheological measurements. The transition from plastic to pseudoplastic flow observed with the increase in loading suggests that a continuous and three-dimensional network formation is closely related to hydrogen bridges and/or hydrogen clusters, culminating in the gel formation. © 1990.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)