951 resultados para COLLISION STRENGTHS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy levels and radiative rates for transitions among the lowest 24 fine-structure levels belonging to the ls(2) nl (n <5) configurations of Li-like O VI have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed over a wide energy range below 63 Ry, using the Dirac Atomic R- matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates, collision strengths, and effective collision strengths are presented for all transitions. Comparisons with other available results are made, and the accuracy of the present data is assessed. Energy levels are expected to be accurate to within 1%, while other parameters are probably accurate to better than 20%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy levels and radiative rates for transitions among the lowest 24 fine-structure levels belonging to the ls(2) nl (n <5) configurations of Li-like C IV have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed over a wide energy range below 28 Ry, using the Dirac Atomic R- matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates, collision strengths, and effective collision strengths are presented for all transitions. Comparisons with other available results are made, and the accuracy of the present data is assessed. Energy levels are expected to be accurate to within 1%, while other parameters are probably accurate to better than 20%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy levels and radiative rates for transitions among the lowest 97 fine-structure levels belonging to the (1s(2) 2s(2) 2p(6)) 3 s(2) 3p(2), 3s3p(3), 3s(2) 3p3d, 3p(4), 3s3p(2) 3d and 3s(2) 3d(2) configurations of Fe XIII have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2004). Radiative rates and oscillator strengths are tabulated for all allowed transitions among the 97 fine-structure levels, while collision strengths are reported for some transitions at a few energies above thresholds. Comparisons are made with the available results, and the accuracy of the data is assessed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy levels and radiative rates for transitions among the lowest 60 fine-structure levels belonging to the (1s(2)) 2s(2)2p(5), 2s2p(6), and 2s(2)2p(4)3l configurations of F-like Mo XXXIV have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have also been computed over a wide energy range below 3200 Ry. using the Dirac Atomic R-matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates, collision strengths, and excitation rates are presented for transitions from the lowest three levels to higher lying states. Comparisons with other available results are made, and the accuracy of the present data is assessed. Energy levels are expected to be accurate to within 1%, while other parameters are probably accurate to better than 20%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Collision strengths for transitions among the energetically lowest 46 fine-structure levels belonging to the (1s(2)) 2s(2)2p(2), 2s2p(3), 2p(4), and 2s(2)2p3l configurations of Ca XV are computed, over a wide electron energy range below 300 Ryd, using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2003). Resonances in the threshold region have been resolved in a fine energy mesh, and excitation rates are determined over a wide electron temperature range below 10(7) K. The results are compared with those available in the literature, and the accuracy of the data is assessed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Collision strengths for transitions among the energetically lowest 46 fine-structure levels belonging to the (1s(2)) 2s(2)2p(2), 2s2p(3). 2p(4), 2s(2)2p3s, 2s(2)2p3p and 2s(2)2p3d configurations of Ca XV are computed. over an electron energy range of 50 less than or equal to E less than or equal to 300 Ryd. using the recent Dirac Atomic R-matrix Code (DARC) of Norrington and Grant. All partial waves with J less than or equal to 40.5 have been included, and the contribution of higher partial waves has been added to ensure the convergence of collision strengths for all transitions and at all energies. The results are compared with those available in the literature, and the accuracy of the data is assessed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy levels, radiative rates, collision strengths, and effective collision strengths for all transitions up to and including the n = 5 levels of AlXIII have been computed in the j j coupling scheme including relativistic effects. All partial waves with angular momentum J less than or equal to 60 have been included, and resonances have been resolved in a fine energy grid in the threshold region. Collision strengths are tabulated at energies above thresholds in the range 170.0 less than or equal to E less than or equal to 300.0 Ryd, and results for effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are tabulated over a wide temperature range of 4.4 less than or equal to log T-e less than or equal to 6.8 K. The importance of including relativistic effects in a calculation is discussed in comparison with the earlier available non-relativistic results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy levels and radiative rates for transitions among the 107 finestructure levels belonging to the (1s(2)2s(2)2p(6)) 3s(2)3p(6)3d(10), 3s(2)3p(6)3d(9)4l, 3s(2)3p(5)3d(10)4l, and 3s3p(6)3d(10)4l configurations of Ni-like ions with 60 less than or equal to Z less than or equal to 90 have been calculated using the GRASP code. The collision strengths (Omega) have also been computed for transitions in Gd XXXVII at energies below 800 Ryd, using the DARC code. Resonances have been resolved in a fine energy mesh in the threshold region, and excitation rate coefficients have been calculated for transitions from the ground level to excited levels at temperatures below 2500 eV. These have been compared with those available in the literature, and enhancement in the values of rates, due to resonances, has been observed up to an order of magnitude for some of the transitions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims. In this paper we report calculations for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions in Fe XVI. Methods. For energy levels and radiative rates we have used the General purpose Relativistic Atomic Structure Package ( grasp), and for the compuations of collision strengths the Dirac Atomic R-matrix Code (darc) has been adopted. Results. Energies for the lowest 39 levels among the n

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the calculation of electron impact collision strengths and effective collision strengths for iron peak elements of importance in the analysis of many astronomical and laboratory spectra. It commences with a brief overview of R-matrix theory which is the basis of computer programs which have been widely used to calculate the relevant atomic data used in this analysis. A summary is then given of calculations carried out over the last 20 y for electron collisions with Fe II. The grand challenge, represented by the calculation of accurate collision strengths and effective collision strengths for this ion, is then discussed. A new parallel R-matrix program PRMAT, which is being developed to meet this challenge, is then described and results of recent calculations, using this program to determine optically forbidden transitions in e- – Ni IV on a Cray T3E-1200 parallel supercomputer, are presented. The implications of this e- – Ni IV calculation for the determination of accurate data from an isoelectronic e- – Fe II calculation are discussed and finally some future directions of research are reviewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims. In this paper we report calculations for energy levels, radiative rates, and excitation rates for transitions in O IV. Methods. The grasp (general-purpose relativistic atomic structure package) and FAC (flexible atomic code) were adopted for calculating energy levels and radiative rates, and the Dirac atomic R-matrix code (DARC) used to determine the excitation rates. Results. Oscillator strengths and radiative rates are reported for all E1, E2, M1, and M2 transitions among the lowest 75 levels of O IV. Additionally, lifetimes are reported for all levels and comparisons made with those available in the literature. Finally, effective collision strengths are reported for all transitions over a wide temperature range below 106 K. Comparisons are made with earlier results and the accuracy of the data is assessed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims. In this paper we report on calculations for energy levels, radiative rates, collision strengths, and effective collision strengths for
transitions among the lowest 25 levels of the n ≤ 5 configurations of H-like Ar xviii.
Methods. The general-purpose relativistic atomic structure package (grasp) andDirac atomic R-matrix code (darc) are adopted for
the calculations.
Results. Radiative rates, oscillator strengths, and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric
quadrupole (E2), and magnetic quadrupole (M2) transitions among the 25 levels. Furthermore, collision strengths and effective
collision strengths are listed for all 300 transitions among the above 25 levels over a wide energy (temperature) range up to 800 Ryd
(107.4 K).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a recent paper, Verma et al. [Eur. Phys. J. D 42, 235 (2007)] have reported results for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions among the lowest 17 levels of the (1s(2)2s(2)2p(6))3s(2)3p(6), 3s(2)3p(5)3d and 3s3p(6)3d configurations of Ni XI. They adopted the CIV3 and R-matrix codes for the generation of wavefunctions and the scattering process, respectively. In this paper, through two independent calculations performed with the fully relativistic DARC (along with GRASP) and FAC codes, we demonstrate that their results are unreliable. New data are presented and their accuracy is assessed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy levels and radiative rates for transitions among the lowest 48 fine-structure levels belonging to the (1s(2) 2s(2) 2p (6)) 3s (2)3p (4) , 3s3p(5), 3s (2)3p (3) 3d and 3p(6) configurations of Fe xi have been calculated using the fully relativistic grasp code. Additionally, collision strengths for transitions among these levels have also been computed using the Dirac Atomic R-matrix Code (darc) of Norrington & Grant. Radiative rates and oscillator strengths are tabulated for all allowed transitions among the 48 fine-structure levels, while collision strengths are reported at three energies above thresholds, i.e. 8, 16 and 24 Ryd for a few representative transitions. Furthermore, excitation rates have been calculated in a wide electron temperature range below 5 x 10(6) K, and the contribution of resonances has been included in the threshold regions. Comparisons are made with the earlier available theoretical and experimental rates, and it is concluded that the experimental rates are overestimated by up to a factor of 2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Collision strengths (Ω) have been calculated for all 7750 transitions among the lowest 125 levels belonging to the View the MathML source, and 2p23ℓ configurations of boron-like krypton, Kr XXXII, for which the Dirac Atomic R -matrix Code has been adopted. All partial waves with angular momentum J⩽40 have been included, sufficient for the convergence of Ω for forbidden transitions. For allowed transitions, a top-up has been included in order to obtain converged values of Ω up to an energy of 500 Ryd. Resonances in the thresholds region have been resolved in a narrow energy mesh, and results for effective collision strengths (ϒ) have been obtained after averaging the values of Ω over a Maxwellian distribution of electron velocities. Values of ϒ are reported over a wide temperature range below View the MathML source, and the accuracy of the results is assessed. Values of ϒ are also listed in the temperature range View the MathML source, obtained from the nonresonant collision strengths from the Flexible Atomic Code.