770 resultados para CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOLOGIA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The segment of Carnaubais Fault located in the southeasthern portion of Guamaré Graben (Potiguar Basin) was studied. Several structures were detected and some of them strongly suggest that the last movements in Carnaubais Fault are of Neotectonic age. The study comprises an integrated interpretation of geologic, geomorphologic and geophysical data (gravimetry, magnetometry, resistivity, and self potential methods). According to the size of the studied areas, two approaches were used in this research. The first approach is of a regional nature and was conducted in an area, hereafter named Regional Area, having approximately 6,000 km2 and localized in the northern portion of Rio Grande do Norte state, around Macau city. The second approach comprises detailled studies of two small areas inside the Regional Area: the Camurupim and São Bento areas. Gravimetric and topographic data were used in the Regional Area. A separation into regional and residual components were conducted both on gravimetric and topographic data. The interpretation of the residual component of the gravimetric data allows a precise mapping of the borders of the Guamaré Graben. The regional component features of the topographic data are controlled by the pair of conjugate faults composed by the Carnaubais Fault (NE direction) and the Afonso Bezerra Fault (NW direction). On the other hand, the residual component of the topographic data shows that river valleis of NW direction are sharply interrupted where they intersect Carnaubais Fault. This fact is interpreted as an evidency that the last significant moviments occured in the Carnaubais Fault. Geologic, geomorphologic and geophysical data (magnetometry, resistivity, and self potential methods) were used in the Camurupim Area. The geologic mapping allows to identify five lithophacies unities. The first two unities (from base to top) were interpreted as composing a marine (or transitional) depositional sequency while the other were interpreted is composing a continental depositional sequence. The two sequences are clearly separated of an erosional discordance. The unities grouped in the marine sequence are composed by calcarenites (Unity A) and mudstones (Unity B). Unity A was deposited in a shalow plataform while Unity B, in a tidal flat. The unities grouped in the continental sequence are composed of conglomerate (Unity C) and sandstones (Unities D and E). Unities C and D are fluvial deposits while unity E is an eolian deposit. Unities A and B can be stratigraphycally correlated with Guamaré Formation. Unities C and D present three possible correlations. They may be correlated with Tibau Formation; or with Barreiras Formation; or with a clastic sediment deposit, commonly found in some rivers of Rio Grande do Norte state, and statigraphycally positioned above Barreiras Formation. Based on the decrease of the grain sizes from base to top both on unities C and D, it is proposed that these unities are correlated with the clastic sediment above mentioned. In this case, these unities would have, at least, Pleistocenic age. Finally, it is proposed that Unity E represent an eolian deposit that sufferred recent changes (at least in the Quaternary). The integrated interpretation of hydrographic, morphologic and geophysical data from Camurupim Area shows that Carnaubais Fault is locally composed by a system of several paralel subvertical faults. The fault presenting the larger vertical slip controls the valley of Camurupim river and separates the area in two blocks; in the nothern block the top of the Jandaira limestone is deeper than in the southern block. In addition, at least one of the faults in the northern block is cutting the whole sedimentary section. Because unities C , D, and/or E may be of Quaternary age, tectonic moviments possibly occured in Carnaubais Fault during this period. Detailled geologic mapping were conducted in beachrocks found in São Bento Area. This area is located at the intersection of the coast line with the Carnaubais Fault. The detected structures in the beachrocks are very similar to those caused by fragile deformations. The structures mapped in the beachrocks are consistent with a stress field with maximun compressional stress in E-W direction and extensional stress in the N-S direction. Since the Carnaubais Fault has a NE direction, it is optimally positioned to suffer tectonic movements under the action of such stress field. In addition, the shape of the coastal line appear to be controlled by the Carnaubais Fault. Furthemore, the observed structures in Camurupim Área are consistent with this stress field. These facts are interpreted as evidences that Carnaubais Fault and beachrocks suffered coupled tectonic movements. These moviments are of Neotectonic age because the beachrocks present ages less than 16,000 years

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the modern Continental Shelf to the north of Rio Grande do Norte state (NE Brazil) is located a paleo-valley, submerged during the last glacial sea-level lowstand, that marks continuation of the most important river of this area (Açu River). Despite the high level of exploration activity of oil industry, there is few information about shallow stratigraphy. Aiming to fill this gap, situated on the Neogene, was worked a marine seismic investigation, the development of a processing flow for high resolution data seismic, and the recognition of the main feature morphology of the study area: the incised valley of the River Açu. The acquisition of shallow seismic data was undertaken in conjunction with the laboratory of Marine Geology/Geophysics and Environmental Monitoring - GGEMMA of Federal University of Rio Grande do Norte UFRN, in SISPLAT project, where the geomorphological structure of the Rio paleovale Açu was the target of the investigation survey. The acquisition of geophysical data has been over the longitudinal and transverse sections, which were subsequently submitted to the processing, hitherto little-used and / or few addressed in the literature, which provided a much higher quality result with the raw data. Once proposed for the flow data was developed and applied to the data of X-Star (acoustic sensor), using available resources of the program ReflexW 4.5 A surface fluvial architecture has been constructed from the bathymetric data and remote sensing image fused and draped over Digital Elevation Models to create three-dimensional (3D) perspective views that are used to analyze the 3D geometry geological features and provide the mapping morphologically defined. The results are expressed in the analysis of seismic sections that extend over the region of the continental shelf and upper slope from mouth of the Açu River to the shelf edge, providing the identification / quantification of geometrical features such as depth, thickness, horizons and units seismic stratigraphyc area, with emphasis has been placed on the palaeoenvironmental interpretation of discordance limit and fill sediment of the incised valley, control by structural elements, and marked by the influence of changes in the sea level. The interpretation of the evolution of this river is worth can bring information to enable more precise descriptions and interpretations, which describes the palaeoenvironmental controls influencing incised valley evolution and preservation to provide a better comprehensive understanding of this reservoir analog system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work embraces the application of Landsat 5-TM digital images, comprising August 2 1989 and September 22 1998, for temporal mapping and geoenvironmental analysis of the dynamic of Piranhas-Açu river mouth, situated in the Macau (RN) region. After treatment using several digital processing techniques (e.g. colour composition in RGB, ratio of bands, principal component analysis, index methods, among others), it was possible to generate several image products and multitemporal maps of the coastal morphodynamics of the studied area. Using the image products it was possible the identification and characterization of the principal elements of interest (vegetation, soil, geology and water) in the surface of the studied area, associating the spectral characteristics of these elements to that presented by the image products resulting of the digital processing. Thus, it was possible to define different types of soils: Amd, AQd6, SK1 and LVe4; vegetation grouping: open arboreal-shrubby caatinga, closed arborealshrubby caatinga, closed arboreal caatinga, mangrove vegetation, dune vegetation and areas predominately constituted by juremas; geological units: quaternary units beach sediments, sand banks, dune flats, barrier island, mobile dunes, fixed dunes, alluvium, tidal and inundation flats, and sandy facies of the Potengi Formation; tertiary-quaternary units Barreiras Formation grouped to the clayey facies of the Potengi Formation, Macau Formation grouped to the sediments of the Tibau Formation; Cretaceous units Jandaíra Formation; moreover it was to identify the sea/land limit, shallow submersed areas and suspended sediments. The multitemporal maps of the coastal morphodynamics allowed the identification and a semi-quantitative evoluation of regions which were submitted to erosive and constructive processes in the last decade. This semi-quantitative evoluation in association with an geoenvironmental characterization of the studied area are important data to the elaboration of actions that may minimize the possible/probable impacts caused by the implantation of the Polo Gas/Sal and to the monitoring of areas explorated by the petroleum and salt industries

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study area is located on the Brazilian Continental Shelf adjacent to Ceará State, inserted in the submerged Potiguar Basin. This area was submitted to extensional efforts during Upper Cretaceous, associated to the begining of the rifting that resulted in African and South American Continent separation. The main goal of this research was to better understand the sedimentary and geomorphological characteristics of the continental shelf adjacent to Fortim, Aracati and Icapuí (Ceará State). The used data base included geophysical (sides scan sonar and bathymetry studies) and sedimentological survey, associated to satellite image processing and interpretation. Inferences about suspended material and longshore drift was possible using satellite images, and differente bedforms were characterized such as: different kinds of dunes (longitudinal, cross and oblique), bioclastic banks, paleochannels, flat and rock bottom. The researched area comprehended about 2509,13 km2, where 6 different sedimentary facies, based on sediment composition and texture, could be recognized, such as: Bioclastic Sand, Siliciclastic Sand, Biosiliciclastic Sand, Bioclastic gravel, Biosiliciclastic sand with granule and gravel, and Silicibioclastic sand with granule and gravel. The integration of bathymetric, satellite image, side scan sonar and sedimentological data allow us a better characterization of this continental shelf area, as to advance in the knowledge of the continental shelf of the state of Ceara, a very important area to the oil industry because of its potential exploration and e exploitation, and to environmental survey as well

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of significant study and exploration of Potiguar Basin, easternmost Brazilian equatorial margin, by the oil industry, its still provides an interesting discussion about its origin and the mechanisms of hydrocarbon trapping. The mapping and interpretation of 3D seismic reflection data of Baixa Grande Fault, SW portion of Umbuzeiro Graben, points as responsible for basin architecture configuration an extensional deformational process. The fault geometry is the most important deformation boundary condition of the rift stata. The development of flat-ramp geometries is responsible for the formation of important extensional anticline folds, many of then hydrocarbon traps in this basin segment. The dominant extensional deformation in the studied area, marked by the development of normal faults developments, associated with structures indicative of obliquity suggests variations on the former regime of Potiguar Basin through a multiphase process. The changes in structural trend permits the generation of local transpression and transtension zones, which results in a complex deformation pattern displayed by the Potiguar basin sin-rift strata. Sismostratigraphic and log analysis show that the Baixa Grande Fault acts as listric growing fault at the sedimentation onset. The generation of a relay ramp between Baixa Grande Fault and Carnaubais Fault was probably responsible for the balance between subsidence and sedimentary influx taxes, inhibiting its growing behaviour. The sismosequences analysis s indicates that the extensional folds generation its diachronic, and then the folds can be both syn- and post-depositional

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is presented an integrated geophysical investigation of the spatial distribution of faults and deformation bands (DB´s) in a faulted siliciclastic reservoir analogue, located in Tucano Basin, Bahia State, northeastern Brazil. Ground Penetrating Radar (GPR) and permeability measurements allowed the analysis of the influence of DB´s in the rock permeability and porosity. GPR data were processed using a suitable flow parametrization in order to highlight discontinuities in sedimentary layers. The obtained images allowed the subsurface detection of DB´s presenting displacements greater that 10 cm. A good correlation was verified between DB´s detected by GPR and those observed in surface, the latter identified using conventional structural methods. After some adaptations in the minipermeameter in order to increase measurement precision, two approaches to measure permeabilities were tested: in situ and in collected cores. The former approach provided better results than the latter and consisted of scratching the outcrop surface, followed by direct measurements on outcrop rocks. The measured permeability profiles allowed to characterize the spatial transition from DB´s to undeformed rock; variation of up to three orders of magnitude were detected. The permeability profiles also presented quasi-periodic patterns, associated with textural and granulometric changes, possibly associated to depositional cycles. Integrated interpretation of the geological, geophysical and core data, provided the subsurface identification of an increase in the DB´s number associated with a sedimentary layer presenting granulometric decrease at depths greater than 8 m. An associated sharp decrease in permeability was also measured in cores from boreholes. The obtained results reveal that radagrams, besides providing high resolution images, allowing the detection of small structures (> 10 cm), also presented a correlation with the permeability data. In this way, GPR data may be used to build upscaling laws, bridging the gap between outcrop and seismic data sets, which may result in better models for faulted reservoirs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study area is located in the northern coast of Rio Grande do Norte State comprising the mouth of Açu-Piranhas river including the cities of Porto do Mangue e Areia Branca. The local geological setting comprises Cretaceous, Tertiary and Quaternary geological units of the Potiguar Basin. One is about a region of high morphologic instability due to action of the rigorous dynamic coastal processes, beyond the intense human activities mainly for the performance of the petroliferous industry, salt farms and tanks of shrimp industry.For the accomplishment of this work Landsat 5 TM and Landsat 7 ETM + from four distinct dates were used as cartographic base, in which one applied techniques of digital processing to elaborate thematic maps of the existing natural resources to support the geologic and geomorphologic characterization and the soil and landuse maps. The strategy applied was the interpretation of multitemporal images from aerial and orbital remote sensors alIied to the terrain truth recognition, integrated through a Geographic Information System. These activities had alIowed the production of Sensitivity Maps of the Coast to Oil Spilling for the area, on the basis of the Coastal Sensibility Index. Taking into account the seasons were created maps to distinct datas: July 2003 represents the winter months that presented a sensibility lower when compared with the month of December 2003. For the summer months greater sensitivity is due to the hydrodynamic data that suggest a lesser capacity of natural cleanness of the oil and its derivatives in spilling case.These outcomes are an important and useful database to support an assessment to a risk situation and to taking decision in the face of an environmental disaster with oil spilling in coastal area, alIowing a complete visualization of the area and identifying all portions in the area with thei environmental units and respective Coastal Sensibility Index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The geological modeling allows, at laboratory scaling, the simulation of the geometric and kinematic evolution of geological structures. The importance of the knowledge of these structures grows when we consider their role in the creation of traps or conduits to oil and water. In the present work we simulated the formation of folds and faults in extensional environment, through physical and numerical modeling, using a sandbox apparatus and MOVE2010 software. The physical modeling of structures developed in the hangingwall of a listric fault, showed the formation of active and inactive axial zones. In consonance with the literature, we verified the formation of a rollover between these two axial zones. The crestal collapse of the anticline formed grabens, limited by secondary faults, perpendicular to the extension, with a curvilinear aspect. Adjacent to these faults we registered the formation of transversal folds, parallel to the extension, characterized by a syncline in the fault hangingwall. We also observed drag folds near the faults surfaces, these faults are parallel to the fault surface and presented an anticline in the footwall and a syncline hangingwall. To observe the influence of geometrical variations (dip and width) in the flat of a flat-ramp fault, we made two experimental series, being the first with the flat varying in dip and width and the second maintaining the flat variation in width but horizontal. These experiments developed secondary faults, perpendicular to the extension, that were grouped in three sets: i) antithetic faults with a curvilinear geometry and synthetic faults, with a more rectilinear geometry, both nucleated in the base of sedimentary pile. The normal antithetic faults can rotate, during the extension, presenting a pseudo-inverse kinematics. ii) Faults nucleated at the top of the sedimentary pile. The propagation of these faults is made through coalescence of segments, originating, sometimes, the formation of relay ramps. iii) Reverse faults, are nucleated in the flat-ramp interface. Comparing the two models we verified that the dip of the flat favors a differentiated nucleation of the faults at the two extremities of the mater fault. V These two flat-ramp models also generated an anticline-syncline pair, drag and transversal folds. The anticline was formed above the flat being sub-parallel to the master fault plane, while the syncline was formed in more distal areas of the fault. Due the geometrical variation of these two folds we can define three structural domains. Using the physical experiments as a template, we also made numerical modeling experiments, with flat-ramp faults presenting variation in the flat. Secondary antithetic, synthetic and reverse faults were generated in both models. The numerical modeling formed two folds, and anticline above the flat and a syncline further away of the master fault. The geometric variation of these two folds allowed the definition of three structural domains parallel to the extension. These data reinforce the physical models. The comparisons between natural data of a flat-ramp fault in the Potiguar basin with the data of physical and numerical simulations, showed that, in both cases, the variation of the geometry of the flat produces, variation in the hangingwall geometry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geological and geophysical studies (resistivity, self potential and VLF) were undertaken in the Tararaca and Santa Rita farms, respectively close to the Santo Antônio and Santa Cruz villages, eastern Rio Grande do Norte State, NE Brazil. Their aim was to characterize water acummulation structures in crystalline rocks. Based on geological and geophysical data, two models were characterized, the fracture-stream and the eluvio-alluvial through, in part already described in the literature. In the Tararaca Farm, a water well was located in a NW-trending streamlet; surrounding outcrops display fractures with the same orientation. Apparent resistivity sections, accross the stream channel, confirm fracturing at depth. The VLF profiles systematically display an alignment of equivalent current density anomalies, coinciding with the stream. Based on such data, the classical fracture-stream model seems to be well characterized at this place. In the Santa Rita Farm, a NE-trending stream display a metric-thick eluvioregolith-alluvial cover. The outcropping bedrock do not present fractures paralell to the stream direction, although the latter coincides with the trend of the gneiss foliation, which dips to the south. Geophysical data confirm the absence of a fracture zone at this place, but delineate the borders of a through-shaped structure filled with sediments (alluvium and regolith). The southern border of this structure dips steeper compared to the northern one. This water acummulation structure corresponds to an alternative model as regards to the classical fracture-stream, being named as the eluvio-alluvial trough. Its local controls are the drainage and relief, coupled with the bedrock weathering preferentially following foliation planes, generating the asymmetry of the through

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a study on the environmental vulnerability of the coastal region of Pititinga, Rio do Fogo/RN. The coastal erosion of Pititinga beach was analyzed and considerated as one more process that produces environmental vulnerability in the area of study, taking into account its human and natural environment and establishing the relation between them, to understand the arrangement that produced its spatial configuration. The natural environment was expressed by thematics maps with geology, geomorphology, vegetation and soil themes, while the human environment was expressed by the use and occupation of the soil map. The coastal erosion was put in an erosion vulnerability map. The methodological procedure to generate the thematics maps, vulnerability maps and of the erosion coastal involved the bibliographic research, field visits with check-list form fill, collect and analysis of sediment sample, photo-interpretation techniques, integration of the information in a database, data store and spatial analysis in a Geographic Information System (GIS) ambient. The natural vulnerability map shows a predominancy of environments with low (29,6%) or medium (42,4%) vulnerability, pointed the frontal and mobile dune as the areas with the highest vulnerability. The environmental vulnerability map, presents a predominancy of environments with low vulnerability (53,8%), with the high vulnerability concentrated on Pititinga community. The coastal erosion vulnerability presented distinct behaviors on three sections among the coastal line according each one characteristics. Where there are frontal and transgressive dunes, vulnerability are, generally, medium or low, respectively, and in the absence of them, as what occurs in Pititinga community, the vulnerability is predominately very high

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing use of shallow seismic methods of high resolution, for investigations of geological problems, environmental or industrial, has impelled the development of techniques, flows and computational algorithms. The practice of applying techniques for processing this data, until recently it wasn t used and the interpretation of the data was made as they were acquired. In order to facilitate and contribute to the improvement of the practices adopted, was developed a free graphical application and open source, called OpenSeismic which is based on free software Seismic Un*x, widely used in the treatment of conventional seismic data used in the exploration of hydrocarbon reservoirs. The data used to validate the initiative were marine seismic data of high resolution, acquired by the laboratory of Geology and Marine Geophysics and Environmental Monitoring - GGEMMA, of the Federal University of Rio Grande do Norte UFRN, for the SISPLAT Project, located at the region of paleo-valley of the Rio Acu. These data were submitted to the processing flow developed by Gomes (2009), using the free software developed in this work, the OpenSeismic, as well other free software, the Seismic Un*x and the commercial software ProMAX, where despite its peculiarities has presented similar results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Borborema Province, Northeastern Brazil, had its internal structure investigated by different geophysical methods like gravity, magnetics and seismics. Additionally, many geological studies were also carried out to define the structural domains of this province. Despite the plethora of studies, there are still many important open aspects about its evolution. Here, we study the velocity structure of S-wave in the crust using dispersion of surface waves. The dispersion of surface waves allows an estimate of the average thickness of the crust across the region between the stations. The inversion of the velocity structure was carried out using the inter-station dispersion of surface waves of Rayleigh and Love types. The teleseismic events are mainly from the edges of the South and North American plates. The period of data collection occurred between 2007 and 2010 and we selected 7 events with magnitude above 5.0 MW and up to 40 km depth. The difference between the events back-azimuths and the interstation path was not greater than 10. We also know the depth of the Moho, results from Receiver Functions (Novo Barbosa, 2008), and use those as constrains in inversion. Even using different parameterizations of models for the inversion, our results were very similar the mean profiles velocity structure of S-wave. In pairs of stations located in the Cear´a Central Domain Borborema the province, there are ranges of depths for which the velocities of S are very close. Most of the results in the profile near the Moho complicate their interpretation at that depth, coinciding with the geology of the region, where there are many shear zones. In particular, the profile that have the route Potiguar Bacia in inter-station, had low velocities in the crust. We combine these results to the results of gravimetry and magnetometry (Oliveira, 2008) and receptor function (Novo Barbosa, 2008). We finally, the first results on the behavior of the velocity structure of S-wave with depth in the Province Borborema

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades, analogue modelling has been used in geology to improve the knowledge of how geological structures are nucleated, how they grow and what are the main important points in such processes. The use of this tool in the oil industry, to help seismic interpretations and mainly to search for structural traps contributed to disseminate the use of this tool in the literature. Nowadays, physical modelling has a large field of applications, since landslide to granite emplacement along shear zones. In this work, we deal with physical modelling to study the influence of mechanical stratifications in the nucleation and development of faults and fractures in a context of orthogonal and conjugated oblique basins. To simulate a mechanical stratigraphy we used different materials, with distinct physical proprieties, such as gypsum powder, glass beads, dry clay and quartz sand. Some experiments were run along with a PIV (Particle Image Velocimetry), an instrument that shows the movement of the particles to each deformation moment. Two series of experiments were studied: i) Series MO: We tested the development of normal faults in a context of an orthogonal (to the extension direction) basin. Experiments were run taking into account the change of materials and strata thickness. Some experiments were done with sintectonic sedimentation. We registered differences in the nucleation and growth of faults in layers with different rheological behavior. The gypsum powder layer behaves in a more competent mode, which generates a great number of high angle fractures. These fractures evolve to faults that exhibit a higher dip than when they cross less competent layers, like the one of quartz sand. This competent layer exhibits faulted blocks arranged in a typical domino-style. Cataclastic breccias developed along the faults affecting the competent layers and showed different evolutional history, depending on the deforming stratigraphic sequence; ii) Series MOS2: Normal faults were analyzed in conjugated sub-basins (oblique to the extension direction) developed in a sequence with and without rheological contrast. In experiments with rheological contrast, two important grabens developed along the faulted margins differing from the subbasins with mechanical stratigraphy. Both experiments developed oblique fault systems and, in the area of sub-basins intersection, faults traces became very curved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to characterize the structural-geophysical expression of the Transbrasiliano Lineament (TBL) in the east-central portion of the Parnaíba Basin. The TBL corresponds to a major Neoproterozoic NE-trending shear zone related to the Brasiliano orogenic cycle, with dextral strike-slip kinematics, underlying (but also laterally exposed in the NE and SW basin edges) the sedimentary section of the Parnaíba Basin. In this study, the interpretation of gravity and magnetic anomaly maps is consistent with the TBL kinematics, the signature of the geophysical anomalies corresponding to the high (plastic behaviour) and subsequent declining temperature (ductile to brittle behaviour) stages during Brasiliano and late Brasiliano times. The pattern of residual gravity anomalies is compatible with an S-C dextral pair shaping the geological bodies of an heterogeneous basement, such as slices of gneisses and granulites (positive anomalies), granitic and low-medium grade metasedimentary rocks (negative anomalies). Such anomalies curvilinear trends, ranging from NNE (interpreted as S surfaces) to NE (C surfaces), correspond to flattening surfaces (S), while the NE rectilinear trend must represent a C band. The narrower magnetic anomalies also display NNE to NE (S surfaces) trends and should correspond to similar (although narrower and more discontinuous) sources in the equivalent anomaly patterns. Pre-Silurian pull-apart style grabens may contribute to the NE negative gravimetric anomalies, although this interpretation demands control by seismic data analysis. On the other hand, the curvilinear anomalies associated to contractional trends are incompatible with their interpretation as pre-Silurian graben, in both maps. In the (reduced to the pole) magnetic anomalies map, most of these are again associated to low-temperature shear zones (C planes) and faults, juxtaposing distinct blocks in terms of magnetic properties, or eventually filled with basic bodies. It is also possible that some isolated magnetic anomalies correspond to igneous bodies of late-Brasiliano or Mesozoic age. The basement late discontinuities pattern can be interpreted in analogy to the Riedel fractures model, with steep dipping surfaces and a sub-horizontal movement section. This study also explored 2D gravity modeling controlled by the interpretation of a dip seismic line as regards to the Transbrasiliano Lineament. The rock section equivalent to the Jaibaras Group occupying a graben structure (as identified in the seismic line) corresponds to a discrete negative anomaly superimposed to a gravimetric high, once again indicating a stronger influence of older crystalline basement rocks as gravimetric sources, mainly reflecting the heterogeneities and anisotropies generated at high temperature conditions and their subsequent cooling along the TBL, during the Brasiliano cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to characterize the structural-geophysical expression of the Transbrasiliano Lineament (TBL) in the east-central portion of the Parnaíba Basin. The TBL corresponds to a major Neoproterozoic NE-trending shear zone related to the Brasiliano orogenic cycle, with dextral strike-slip kinematics, underlying (but also laterally exposed in the NE and SW basin edges) the sedimentary section of the Parnaíba Basin. In this study, the interpretation of gravity and magnetic anomaly maps is consistent with the TBL kinematics, the signature of the geophysical anomalies corresponding to the high (plastic behaviour) and subsequent declining temperature (ductile to brittle behaviour) stages during Brasiliano and late Brasiliano times. The pattern of residual gravity anomalies is compatible with an S-C dextral pair shaping the geological bodies of an heterogeneous basement, such as slices of gneisses and granulites (positive anomalies), granitic and low-medium grade metasedimentary rocks (negative anomalies). Such anomalies curvilinear trends, ranging from NNE (interpreted as S surfaces) to NE (C surfaces), correspond to flattening surfaces (S), while the NE rectilinear trend must represent a C band. The narrower magnetic anomalies also display NNE to NE (S surfaces) trends and should correspond to similar (although narrower and more discontinuous) sources in the equivalent anomaly patterns. Pre-Silurian pull-apart style grabens may contribute to the NE negative gravimetric anomalies, although this interpretation demands control by seismic data analysis. On the other hand, the curvilinear anomalies associated to contractional trends are incompatible with their interpretation as pre-Silurian graben, in both maps. In the (reduced to the pole) magnetic anomalies map, most of these are again associated to low-temperature shear zones (C planes) and faults, juxtaposing distinct blocks in terms of magnetic properties, or eventually filled with basic bodies. It is also possible that some isolated magnetic anomalies correspond to igneous bodies of late-Brasiliano or Mesozoic age. The basement late discontinuities pattern can be interpreted in analogy to the Riedel fractures model, with steep dipping surfaces and a sub-horizontal movement section. This study also explored 2D gravity modeling controlled by the interpretation of a dip seismic line as regards to the Transbrasiliano Lineament. The rock section equivalent to the Jaibaras Group occupying a graben structure (as identified in the seismic line) corresponds to a discrete negative anomaly superimposed to a gravimetric high, once again indicating a stronger influence of older crystalline basement rocks as gravimetric sources, mainly reflecting the heterogeneities and anisotropies generated at high temperature conditions and their subsequent cooling along the TBL, during the Brasiliano cycle.