981 resultados para CIRCUIT ANALYSIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a three-dimensional numerical analysis of the electromagnetic forces within a high voltage superconducting Fault Current Limiter (FCL) with a saturated core under short-circuit conditions. The effects of electrodynamics forces in power transformer coils under short-circuit conditions have been reported widely. However, the coil arrangement in an FCL with saturated core differs significantly from existing reactive devices. The boundary element method is employed to perform an electromagnetic force analysis on an FCL. The analysis focuses on axial and radial forces of the AC coil. The results are compared to those of a power transformer and important design considerations are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of cable parameters has been well established but a better knowledge of the environment in which the cables are buried lags behind. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with a data logger system and buried spheres that use an improved technique to measure thermal resistivity and diffusivity over a short period. Results based on long term continuous field data are given. A probabilistic approach is developed to establish the correlation between the measured field thermal resistivity values and rainfall data from weather bureau records. This data from field studies can reduce the risk in cable rating decisions and provide a basis for reliable prediction of “hot spot” of an existing cable circuit

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonlinear finite element analysis was carried out to investigate the viscoplastic deformation of solder joints in a ball grid array (BGA) package under temperature cycle. The effects of constraint on print circuit board (PCB) and stiffness of substrate on the deformation behaviour of the solder joints were also studied. A relative damage stress was adopted to analyze the potential failure sites in the solder joints. The results indicated that high inelastic strain and strain energy density were developed in the joints close to the package center. On the other hand, high constraint and high relative damage stress were associated with the joint closest to the edge of the silicon chip. The joint closest to the edge of the silicon chip was regarded as the most susceptible failure site if cavitation instability is the dominant failure mechanism. Increase the external constraint on the print circuit board (PCB) causes a slight increase in stress triaxiality (m/eq) and relative damage stress in the joint closest to the edge of silicon die. The relative damage stress is not sensitive to the Young’s modulus of the substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design of an Ultra Wide Band (UWB) filter over 3.1 GHz to 10.6 GHz using broad side coupled and spur lines in microstrip medium suitable for UWB communications has been presented in this paper. Parameters of broad side coupled lines have been appropriately chosen to achieve ultra wide band response. Spur lines have been incorporated at the input and output feed lines of the filter to improve the stop band rejection characteristics of the filter. Filter has been analyzed based on circuit models and full wave simulations. Experimental results of the filter designed using the proposed structure has been verified against the results obtained from circuit models and full wave simulations. The results match satisfactorily. Stop band rejection of better than 20 dB was obtained over the frequencies of 13 GHz to 18.2 GHz. Overall size of the filter is 40 x 18 x 0.787 mm(3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an earlier paper [1], it has been shown that velocity ratio, defined with reference to the analogous circuit, is a basic parameter in the complete analysis of a linear one-dimensional dynamical system. In this paper it is shown that the terms constituting velocity ratio can be readily determined by means of an algebraic algorithm developed from a heuristic study of the process of transfer matrix multiplication. The algorithm permits the set of most significant terms at a particular frequency of interest to be identified from a knowledge of the relative magnitudes of the impedances of the constituent elements of a proposed configuration. This feature makes the algorithm a potential tool in a first approach to a rational design of a complex dynamical filter. This algorithm is particularly suited for the desk analysis of a medium size system with lumped as well as distributed elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical investigation of the transverse shear wave mode tuning with a resonator mass (packing mass) on a Lead Zirconium Titanate (PZT) crystal bonded together with a host plate and its equivalent electric circuit parameters are presented. The energy transfer into the structure for this type of wave modes are much higher in this new design. The novelty of the approach here is the tuning of a single wave mode in the thickness direction using a resonator mass. First, a one-dimensional constitutive model assuming the strain induced only in the thickness direction is considered. As the input voltage is applied to the PZT crystal in the thickness direction, the transverse normal stress distribution induced into the plate is assumed to have parabolic distribution, which is presumed as a function of the geometries of the PZT crystal, packing mass, substrate and the wave penetration depth of the generated wave. For the PZT crystal, the harmonic wave guide solution is assumed for the mechanical displacement and electric fields, while for the packing mass, the former is solved using the boundary conditions. The electromechanical characteristics in terms of the stress transfer, mechanical impedance, electrical displacement, velocity and electric field are analyzed. The analytical solutions for the aforementioned entities are presented on the basis of varying the thickness of the PZT crystal and the packing mass. The results show that for a 25% increase in the thickness of the PZT crystal, there is ~38% decrease in the first resonant frequency, while for the same change in the thickness of the packing mass, the decrease in the resonant frequency is observed as ~35%. Most importantly the tuning of the generated wave can be accomplished with the packing mass at lower frequencies easily. To the end, an equivalent electric circuit, for tuning the transverse shear wave mode is analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This three-phase design research describes the modelling processes for DC-circuit phenomena. The first phase presents an analysis of the development of the DC-circuit historical models in the context of constructing Volta s pile at the turn of the 18th century. The second phase involves the designing of a teaching experiment for comprehensive school third graders. Among other considerations, the design work utilises the results of the first phase and research literature of pupils mental models for DC-circuit phenomena. The third phase of the research was concerned with the realisation of the planned teaching experiment. The aim of this phase was to study the development of the external representations of DC-circuit phenomena in a small group of third graders. The aim of the study has been to search for new ways to guide pupils to learn DC-circuit phenomena while emphasing understanding at the qualitative level. Thus, electricity, which has been perceived as a difficult and abstract subject, could be learnt more comprehensively. Especially, the research of younger pupils learning of electricity concepts has not been of great interest at the international level, although DC-circuit phenomena are also taught in the lower classes of comprehensive schools. The results of this study are important, because there has tended to be more teaching of natural sciences in the lower classes of comprehensive schools, and attempts are being made to develop this trend in Finland. In the theoretical part of the research an Experimental-centred representation approach, which emphasises the role of experimentalism in the development of pupil s representations, is created. According to this approach learning at the qualitative level consists of empirical operations like experimenting, observations, perception, and prequantification of nature phenomena, and modelling operations like explaining and reasoning. Besides planning teaching, the new approach can be used as an analysis tool in describing both historical modelling and the development of pupils representations. In the first phase of the study, the research question was: How did the historical models of DC-circuit phenomena develop in Volta s time? The analysis uncovered three qualitative historical models associated with the historical concept formation process. The models include conceptions of the electric circuit as a scene in the DC-circuit phenomena, the comparative electric-current phenomenon as a cause of different observable effect phenomena, and the strength of the battery as a cause of the electric-current phenomenon. These models describe the concept formation process and its phases in Volta s time. The models are portrayed in the analysis using fragments of the models, where observation-based fragments and theoretical fragements are distinguished from each other. The results emphasise the significance of the qualitative concept formation and the meaning of language in the historical modelling of DC-circuit phenomena. For this reason these viewpoints are stressed in planning the teaching experiment in the second phase of the research. In addition, the design process utilised the experimentation behind the historical models of DC-circuit phenomena In the third phase of the study the research question is as follows: How will the small group s external representations of DC-circuit phenomena develop during the teaching experiment? The main question is divided into the following two sub questions: What kind of talk exists in the small group s learning? What kinds of external representations for DC-circuit phenomena exist in the small group discourse during the teaching experiment? The analysis revealed that the teaching experiment of the small group succeeded in its aim to activate talk in the small group. The designed connection cards proved especially successful in activating talk. The connection cards are cards that represent the components of the electric circuit. In the teaching experiment the pupils constructed different connections with the connection cards and discussed, what kinds of DC-circuit phenomena would take place in the corresponding real connections. The talk of the small group was analysed by comparing two situations, firstly, when the small group discussed using connections made with the connection cards and secondly with the same connections using real components. According to the results the talk of the small group included more higher-order thinking when using the connection cards than with similar real components. In order to answer the second sub question concerning the small group s external representations that appeared in the talk during the teaching experiment; student talk was visualised by the fragment maps which incorporate the electric circuit, the electric current and the source voltage. The fragment maps represent the gradual development of the external representations of DC-circuit phenomena in the small group during the teaching experiment. The results of the study challenge the results of previous research into the abstractness and difficulty of electricity concepts. According to this research, the external representations of DC-circuit phenomena clearly developed in the small group of third graders. Furthermore, the fragment maps uncover that although the theoretical explanations of DC-circuit phenomena, which have been obtained as results of typical mental model studies, remain undeveloped, learning at the qualitative level of understanding does take place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the effects of energy quantization on different single-electron transistor (SET) circuits (logic inverter, current-biased circuits, and hybrid MOS-SET circuits) are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantizationmainly increases the Coulomb blockade area and Coulomb blockade oscillation periodicity, and thus, affects the SET circuit performance. A new model for the noise margin of the SET inverter is proposed, which includes the energy quantization effects. Using the noise margin as a metric, the robustness of the SET inverter is studied against the effects of energy quantization. An analytical expression is developed, which explicitly defines the maximum energy quantization (termed as ``quantization threshold'') that an SET inverter can withstand before its noise margin falls below a specified tolerance level. The effects of energy quantization are further studiedfor the current-biased negative differential resistance (NDR) circuitand hybrid SETMOS circuit. A new model for the conductance of NDR characteristics is also formulated that explains the energy quantization effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design of high-frequency inductors for purposes like Active Front End (AFE) converter filters involves analytical calculations based on methods like area product approach and accurate graphical methods. Once a core with an area product is selected the subsequent calculations of inductance and peak operating flux requires the estimation of reluctance of the magnetic circuit. This in turn demands an estimate of the fringing that will happen in the air gap of the inductor. In this paper we have looked at analytical methods for evaluating fringing flux and compared it with results from finite element method. Different levels of details of modelling the inductor is first considered for this purpose. The end results are compared with experimental measurements of inductance. It is shown that simple fringing flux model can provide accurate models for the inductor design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Utilizing a circuit model [1, 2] of an induction motor, a simplified analysis of steady state performance of a voltage controlled induction motor (VCIM) drive is described in this paper. By solving a set of nonlinear algebraic equations which describe the VCIM drive under steady operation, the operating variables such as constant components of torque, rotor flux linkages, fundamental components of stator voltage and current and phase angle are obtained for any given value of slip, triggering angle and supply voltage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical properties of the film-covered anode/solution interface in the magnesium/ manganese dioxide dry cell have been evaluated. The most plausible electrical equivalent circuit description of the Mg/solution interface with the passive film intact, has been identified. These results are based on the analysis of ac impedance and voltage transient measurements made on the dry cell under conditions which cause no damage to the protective passive film on the anode. The study demonstrates the complementary character of impedance and transient measurements when widely different frequency ranges are sampled in each type of investigation. The values and temperature dependence of the anode-film resistance, film capacitance, double-layer capacitance and charge-transfer resistance of the film-covered magnesium/solution interface have been determined. The magnitude of these values and its implications in understanding the important performance aspects of the magnesium/manganese dioxide dry cell are discussed. The study may be extended, in principle, to Li, Al and Ca batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical properties of the film-covered anode/solution interface in the magnesium/ manganese dioxide dry cell have been evaluated. The most plausible electrical equivalent circuit description of the Mg/solution interface with the passive film intact, has been identified. These results are based on the analysis of ac impedance and voltage transient measurements made on the dry cell under conditions which cause no damage to the protective passive film on the anode. The study demonstrates the complementary character of impedance and transient measurements when widely different frequency ranges are sampled in each type of investigation. The values and temperature dependence of the anode-film resistance, film capacitance, double-layer capacitance and charge-transfer resistance of the film-covered magnesium/solution interface have been determined. The magnitude of these values and its implications in understanding the important performance aspects of the magnesium/manganese dioxide dry cell are discussed. The study may be extended, in principle, to Li, Al and Ca batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artificial neural networks (ANNs) have shown great promise in modeling circuit parameters for computer aided design applications. Leakage currents, which depend on process parameters, supply voltage and temperature can be modeled accurately with ANNs. However, the complex nature of the ANN model, with the standard sigmoidal activation functions, does not allow analytical expressions for its mean and variance. We propose the use of a new activation function that allows us to derive an analytical expression for the mean and a semi-analytical expression for the variance of the ANN-based leakage model. To the best of our knowledge this is the first result in this direction. Our neural network model also includes the voltage and temperature as input parameters, thereby enabling voltage and temperature aware statistical leakage analysis (SLA). All existing SLA frameworks are closely tied to the exponential polynomial leakage model and hence fail to work with sophisticated ANN models. In this paper, we also set up an SLA framework that can efficiently work with these ANN models. Results show that the cumulative distribution function of leakage current of ISCAS'85 circuits can be predicted accurately with the error in mean and standard deviation, compared to Monte Carlo-based simulations, being less than 1% and 2% respectively across a range of voltage and temperature values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature variation in the insulation around an electronic component, mounted on a horizontal circuit board is studied numerically. The flow is assumed to be laminar and fully developed. The effect of mixed convection and two different types of insulation are considered. The mass, momentum and energy conservation equations in the fluid and conduction equation in the insulation are solved using the SIMPLER algorithm. Computations are carried out for liquid Freon and water, for different conductivity ratios, and different Rayleigh numbers. It is demonstrated that the temperature variation within the insulation becomes important when the thermal conductivity of the insulation is less than ten times the thermal conductivity of the cooling medium.