993 resultados para CHANNEL WIDTH


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the estimation of a time-invariant channel spectrum from its own nonuniform samples, assuming there is a bound on the channel’s delay spread. Except for this last assumption, this is the basic estimation problem in systems providing channel spectral samples. However, as shown in the paper, the delay spread bound leads us to view the spectrum as a band-limited signal, rather than the Fourier transform of a tapped delay line (TDL). Using this alternative model, a linear estimator is presented that approximately minimizes the expected root-mean-square (RMS) error for a deterministic channel. Its main advantage over the TDL is that it takes into account the spectrum’s smoothness (time width), thus providing a performance improvement. The proposed estimator is compared numerically with the maximum likelihood (ML) estimator based on a TDL model in pilot-assisted channel estimation (PACE) for OFDM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this letter, we present a standard linear cavity fiber laser incorporating a microchannel for refractive index (RI) and temperature sensing. The microchannel of ~6µm width created by femtosecond laser aided chemical etching provides an access to the external liquid; therefore, the laser cavity loss changes with the liquids of different RIs. Thus, at a fixed pump power, the output laser power will vary with the change of RI in the microchannel. The results show that the proposed sensing system has a linear response to both the surrounding medium RI and temperature. The RI sensitivity of the laser system is on the order of 10-3, while the temperature sensitivity is about 0.02 C. Both sensitivities could be further enhanced by employing a more sensitive photodetector and using higher pump power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical control of interactions in ultracold gases opens new fields of research by creating ``designer" interactions with high spatial and temporal resolution. However, previous optical methods using single optical fields generally suffer from atom loss due to spontaneous scattering. This thesis reports new optical methods, employing two optical fields to control interactions in ultracold gases, while suppressing spontaneous scattering by quantum interference. In this dissertation, I will discuss the experimental demonstration of two optical field methods to control narrow and broad magnetic Feshbach resonances in an ultracold gas of $^6$Li atoms. The narrow Feshbach resonance is shifted by $30$ times its width and atom loss suppressed by destructive quantum interference. Near the broad Feshbach resonance, the spontaneous lifetime of the atoms is increased from $0.5$ ms for single field methods to $400$ ms using our two optical field method. Furthermore, I report on a new theoretical model, the continuum-dressed state model, that calculates the optically induced scattering phase shift for both the broad and narrow Feshbach resonances by treating them in a unified manner. The continuum-dressed state model fits the experimental data both in shape and magnitude using only one free parameter. Using the continuum-dressed state model, I illustrate the advantages of our two optical field method over single-field optical methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.