987 resultados para CHANGING OCEAN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrated Ocean Drilling Program (IODP) Expedition 302 (Arctic Coring Expedition, ACEX) recovered a unique sediment record from the central Arctic Ocean, revealing that this region underwent major environmental fluctuations since the Late Cretaceous. Major and trace element composition of 1,300 samples were determined using X-ray fluorescence (XRF). The results show significant compositional variability of the sediments with depth that can be attributed to changes in (a) provenance and pathways of detrital material, (b) paleoenvironmental conditions and depositional processes, and (c) diagenetic overprint of the primary record. In addition to existing lithological units, we introduce new geochemical units for a more process-related approach interpreting the ACEX record. In detail, via the geochemical signature of Siberian flood basalts we are able to reconstruct the discontinuous rifting and deepening of the central Lomonosov Ridge during the Paleogene, accompanied by changing current regimes and the onset of sea ice. Eocene biosiliceous sedimentation took place in a relatively shallow setting under predominantly anoxic bottom water conditions, causing a positive anoxia-productivity feedback, although water column stratification was repeatedly interrupted by ventilation events. Anoxic to sulfidic conditions were even more extreme after biosilica production ceased, and significant amounts of pyrite were deposited on the Lomonosov Ridge. Especially in organic matter-rich Paleogene deposits, diagenetic processes obscured the paleoenvironmental signals. Fundamental environmental changes occurred in the Middle Eocene, but geochemical and micropaleontological proxies point not to the identical sediment depth. After approximately 26 Ma of non-deposition or erosion, the Middle Miocene record shows the transition to dominantly oxic bottom water conditions, although suboxic diagenesis seemingly affected these deposits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifiable radiolarians of stratigraphic importance were recovered at eight of the sites drilled on Leg 115. The assemblages range in age from Holocene to middle Eocene (Dictyoprora mongolfieri Zone, about 48 Ma). Faunal preservation is particularly good in two stratigraphic intervals: the Holocene through upper Miocene (0-9 Ma), and the lowermost Oligocene to middle Eocene (35-48 Ma). Fluctuating rates of silica accumulation at these drill sites during the Cenozoic reflect changing tectonic and paleoceanographic conditions. In particular, the gradual closure of the Indonesian and Tethyan seaways and the northward migration of the Indian subcontinent severely restricted zonal circulation and silica accumulation in tropical latitudes during the late Oligocene through middle Miocene. By the late Miocene the Indian subcontinent had moved sufficiently north of the equator to allow trans-Indian zonal circulation patterns to become reestablished, and biosiliceous sedimentation resumed. The composition of the radiolarian assemblages in the tropical Indian Ocean is closely comparable with that of the 'stratotype' sequences in the equatorial Pacific. However, there are some notable exceptions in Indian Ocean assemblages: (1) the scarcity of the genera Pterocanium and Spongaster in the Neogene; (2) the absence of the stratigraphically important Podocyrtis lineage, P. diamesa -> P. phyxis -> P. ampla, in the middle Eocene; and (3) the scarcity of taxa of the genus Dorcadospyris, with the exception of D. ateuchus. The succession of radiolarian events was tabulated for those stratigraphic intervals where the assemblages were well preserved. We identified 55 events in the middle Eocene to earliest Oligocene, and 31 events in the late Miocene to Holocene. The succession of events is closely comparable with that of the tropical Pacific. However, there are exceptions that appear to be real, rather than artifacts of sample preservation, mixing, and core disturbance.