214 resultados para CFRP invecchiamento
Resumo:
[ES]El taladrado “one shot” de apilados de CFRP/Titanio está caracterizado por la corta vida útil de las brocas, aunque por lo general, la calidad de los agujeros es buena. Una alternativa al taladrado convencional es el taladrado orbital. Este trabajo, tiene tres objetivos principales: el primero es establecer unas condiciones de corte óptimas para el taladrado orbital en apilados de CFRP/Titanio de sección constante; la segunda, es analizar la calidad de los agujeros: rugosidad, ovalización, precisión dimensional…al igual que el desgaste de las herramientas; y el tercero es establecer una zona de trabajo dependiendo de los parámetros del proceso.
Resumo:
External, prestressed carbon fiber reinforced polymer (CFRP) straps can be used to enhance the shear strength of existing reinforced concrete beams. In order to effectively design a strengthening system, a rational predictive theory is required. The current work investigates the ability of the modified compression field theory (MCFT) to predict the behavior of rectangular strap strengthened beams where the discrete CFRP strap forces are approximated as a uniform vertical stress. An unstrengthened control beam and two strengthened beams were tested to verify the predictions. The experimental results suggest that the MCFT could predict the general response of a strengthened beam with a uniform strap spacing < 0.9d. However, whereas the strengthened beams failed in shear, the MCFT predicted flexural failures. It is proposed that a different compression softening model or the inclusion of a crack width limit is required to reflect the onset of shear failures in the strengthened beams.
Resumo:
In fibre reinforced polymer (FRP) prestressed concrete applications, an FRP tendon must sustain high axial tensile stresses and, if cracks occur, additional dowel forces. The tendon may also be exposed to solutions and so the combined axial-shear stress performance after long-term environmental exposure is important. Experiments were conducted to investigate the combined axial-shear stress failure envelope for unidirectional carbon FRP tendons which had been exposed to either water, salt water or concrete pore solution at 60 °C for approximately 18 months. The underlying load resisting mechanisms were found to depend on the loading configuration, restraint effects and the initial stress state. When saturated, CFRP tendons are likely to exhibit a reduced shear stiffness. However, the ultimate limit state appeared to be fibre-dominated and was therefore less susceptible to reductions due to solution uptake effects. © 2012 Elsevier Ltd. All rights reserved.