977 resultados para CFRP aging composite thermal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2013

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermal properties of short Nylon-6 fiber-reinforced Styrene butadiene rubber (SBR) composites were studied by Thermogravimetric Analysis (TGA). The effect of epoxy-based bonding agent on thermal degradation of the gum and the composites was also studied. The thermal stability of the SBR was enhanced in the presence of Nylon-6 fibers and the stability of the composites increased in the presence of bonding agent. The epoxy resin did not significantly change the thermal stability of SBR gum vulcanizate. Results of kinetic studies showed that the degradation of SBR and the short nylon fiber-reinforced composites with and without bonding agents followed first-order kinetics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermal degradation of short polyester fiber reinforced polyurethane composites with and without different bonding agents has been studied by thermogravimetric analysis . It was found that degradation of the polyurethane takes place in two steps and that of the composites takes place in three steps. With the incorporation of 30 phr of fiber in the matrix , the onset of degradation was shifted from 230 to 238 ° C. The presence of bonding agents in the virgin elastomer and the composite gave an improved thermal stability . Results of kinetic studies showed that the degradation of polyurethane and the reinforced composites with and without bonding agents follows first -order reaction kinetics

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermal degradation of short kevlar fibre-thermoplastic polyurethane (TPU) composites has been studied by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). TGA showed that the thermal degradation of TPU takes place in two steps with peak maxima (T1max and T2ma,) at 383°C and 448°C, respectively. In the presence of 10-40 phr of short kevlar fibres, T1_ and T2max were shifted to lower temperatures. The temperature of onset of degradation was increased from 245 to 255°C at 40 parts per hundred rubber (phr) fibre loading. Kinetic studies showed that the degradation of TPU and kevlar-TPU composite follows first-order reaction kinetics. The DSC study showed that there is an improvement in thermal stability of TPU in the presence of 20 phr of short kevlar fibres.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The work presented in this thesis is regarding the development and evaluation of new bonding agents for short polyester fiber - polyurethane elastomer composites. The conventional bonding system based on hexamethylenetetramine, resorcinol and hydrated silica was not effective as a bonding agent for the composite, as the water eliminated during the formation of the RF resin hydrolysed the urethane linkages. Four bonding agents based on MDI/'I‘DI and polypropyleneglycol, propyleneglycol and glycerol were prepared and the composite recipe was optimised with respect to the cure characteristics and mechanical properties. The flow properties, stress relaxation pattern and the thermal degradation characteristics of the composites containing different bonding agents were then studied in detail to evaluate the new bonding systems. The optimum loading of resin was 5 phr and the ratio of the -01 to isocyanate was 1:1. The cure characteristics showed that the optimum combination of cure rate and processability was given by the composite with the resin based on polypropyleneglycol/ glycerol/ 4,4’diphenylmethanediisocynate (PPG/GL/MDI). From the rheological studies of the composites with and without bonding agents it was observed that all the composites showed pseudoplastic nature and the activation energy of flow of the composite was not altered by the presence of bonding agents. Mechanical properties such as tensile strength, modulus, tear resistance and abrasion resistance were improved in the presence of bonding agents and the effect was more pronounced in the case of abrasion resistance. The composites based on MDI/GL showed better initial properties while composites with resins based on MDI/PPG showed better aging resistance. Stress relaxation showed a multistage relaxation behaviour for the composite. Within the-strain levels studied, the initial rate of relaxation was higher and the cross over time was lesser for the composite containing bonding agents. The bonding agent based on MDI/PPG/GL was found to be a better choice for improving stress relaxation characteristics with better interfacial bonding. Thennogravimetirc analysis showed that the presence of fiber and bonding agents improved the thennal stability of the polyurethane elastomer marginally and it was maximum in the case of MDI / GL based bonding agents. The kinetics of degradation was not altered by the presence of bonding agents

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structural and thermal properties of three different dental composite resins, Filtek (TM) Supreme XT, Filtek (TM) Z-250 and TPHA (R)(3) were investigated in this study. The internal structures of uncured and cured resins with blue light-emitting diodes (LEDs) were examined by Micro-Raman spectroscopy. Thermal analysis techniques as DSC, TG and DTG methods were used to investigate the temperature characteristics, as glass transition (T (g) ), degradation, and the thermal stability of the resins. The results showed that the TPHA (R)(3) and Filtek (TM) Supreme XT presented very similar T (g) values, 48 and 50A degrees C, respectively, while the Filtek (TM) Z-250 composite resin presented a higher one, 58A degrees C. AFM microscope was utilized in order to analyze the sample morphologies, which possess different fillers. The composed resin Filtek (TM) Z-250 has a well interconnected more homogeneous morphology, suggesting a better degree of conversion correlated to the glass phase transition temperature. The modes of vibration of interest in the resin were investigated using Raman spectroscopy. It was possible to observe the bands representative for the C=C (1630 cm(-1)) and C=O(1700 cm(-1)) vibrations were studied with respect to their compositions and polymerization. It was observed that the Filtek (TM) Z -250 resin presents the best result related to the thermal properties and polymerization after light curing among the other resins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advanced polymeric materials and their respective composites are fast becoming one of the world's most frequently used engineering materials. They find application in the manufacture of e.g. boat hulls, high performance motor vehicles, aircraft components and sports goods. Their high specific strength and specific stiffness give them the edge in applications where weight savings are critical, but their long-term durability is often questioned. These materials are susceptible to environmental conditions such as temperature and humidity. There is also a lack of relevant data, due to the long time-scales required for testing. In this study, the Raman technique has been used to monitor the degradation of two composite systems, namely: a rubber toughened vinylester material used in the marine industry and a high temperature bismaleimide/carbon fibre aerospace composite. Preliminary Raman studies show that the toughening rubber particles dispersed in the cured vinylester resin are leached out during hygrothermal ageing. The weight gain during ageing suggests that this leaching process occurs concurrently with the absorption of water molecules. An increase in the degree of cross-linking is observed when bismaleimide/carbon fibre composite is aged at high temperature. This cross- linking tendency decreases with increasing depth within the carbon fibre bundle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study has examined the thermodynamics of MgAl2O4 and MgO formations in Al–Mg alloy/quartz (>99% crystalline silica) through differential thermal analysis (DTA). The formation of MgAl2O4 and MgO is detected as exothermic peaks in the heat flow curve and the reaction is confirmed by the Si dissolution peaks observed during the reheating of samples and SEM analysis of the reacted sample. The presence of MgAl2O4 and MgO is confirmed in the XRD analysis of the reacted sample. The study has enabled the production of nano sized MgAl2O4 and MgO crystals at the interface of Al–Mg alloy and quartz. The reaction between them is found to be influenced by the oxidation of Mg, which is reduced by increasing heating rates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diglycidyl ether of bisphenol-A type epoxy resin cured with diamino diphenyl sulfone was used as the matrix for fiber-reinforced composites to get improved mechanical and thermal properties for the resulting composites. E-glass fiber was used for fiber reinforcement. The morphology, tensile, flexural, impact, dynamic mechanical, and thermal properties of the composites were analyzed. The tensile, flexural, and impact properties showed dramatic improvement with the addition of glass fibers. Dynamic mechanical analysis was performed to obtain the Tg of the cured matrix as well as the composites. The improved thermal stability of the composites was clear from the thermogravimetric analysis. Scanning electron micrographs were taken to understand the interfacial adhesion between the fiber and the matrix. The values of mechanical properties were compared with modified epoxy resin composite system. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the effect of various aging environments on the painted surface finish of unidirectional carbon fibre composite laminates, manufactured by autoclave and a novel out-of-autoclave technique was investigated. Laminates were exposed to water immersion, 95 % relative humidity and cyclic environments for 552 h and the surface finish was evaluated using visual and wave-scan distinctness of image (DOI) techniques. It was found that the laminate surface finish was dependent on the amount of moisture in the aging test. Minor surface waviness occurred on the laminates exposed to the cyclic test, whereas, surface waviness, print through and DOI values were all significantly higher as the laminates absorbed larger quantities of moisture from the hygrothermal and hydrothermal tests. The water immersion test, which was the most detrimental to the surface finish of the painted laminates, produced dense blistering on the autoclave manufactured laminate surface whereas the out-of-autoclave laminate surface produced only a few. It was found that the out-of-autoclave laminate had high substrate surface roughness which resulted in improved paint adhesion and, therefore, prevented the formation of surface blistering with aging. © 2012 Springer Science+Business Media Dordrecht.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, the effect of hygrothermal aging on the painted surface finish of unidirectional and fabric carbon fibre composite laminates, with and without surfacing film was investigated. The results highlighted the importance of ensuring that the composite surface directly beneath the paint layer is made from a uniform material with a consistent thickness in order to minimise surface defects from occurring during aging. The surfacing film was found to minimise the print through development on the painted unidirectional and twill composite surfaces. However, the surfacing film layer was found to intermingle with the carbon fibre plies during cure, which resulted in an uneven film thickness that caused increased levels of orange peel. The twill laminate painted surface produced high levels of print through and surface waviness that was caused by the large resin rich regions located within the tow intersections at the surface which enlarged due to thermal expansion and swelling of the matrix with hygrothermal aging. It was also noted that the small resin rich regions between the individual carbon fibres on the unidirectional composite surface were sufficiently large to print through the painted surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Graphene, multi-wall carbon nanotube (MWCNT) and fine boron nitride (BN) particles were separately applied with a resin onto a cotton fabric, and the effect of the thin composite coatings on the thermal conductive property, air permeability, wettability and color appearance of the cotton fabric was examined. The existence of the fillers within the coating layer increased the thermal conductivity of the coated cotton fabric. At the same coating content, the increase in fabric thermal conductivity was in the order of graphene > BN > MWCNT, ranging from 132 % to 842 % (based on pure cotton fabric). The coating led to 73 %, 69 % and 64 % reduction in air permeability when it respectively contained 50.0 wt% graphene, BN and MWCNTs. The graphene and MWCNT treated fabrics had a black appearance, but the coating had almost no influence on the fabric hydrophilicity. The BN coating made cotton fabric surface hydrophobic, with little change in fabric color.