988 resultados para CEREBRAL HEMISPHERE REGULATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review highlights the importance of right hemisphere language functions for successful social communication and advances the hypothesis that the core deficit in psychosis is a failure of segregation of right from left hemisphere functions. Lesion studies of stroke patients and dichotic listening and functional imaging studies of healthy people have shown that some language functions are mediated by the right hemisphere rather than the left. These functions include discourse planning/comprehension, understanding humour, sarcasm, metaphors and indirect requests, and the generation/comprehension of emotional prosody. Behavioural evidence indicates that patients with typical schizophrenic illnesses perform poorly on tests of these functions, and aspects of these functions are disturbed in schizo-affective and affective psychoses. The higher order language functions mediated by the right hemisphere are essential to an accurate understanding of someone's communicative intent, and the deficits displayed by patients with schizophrenia may make a significant contribution to their social interaction deficits. We outline a bi-hemispheric theory of the neural basis of language that emphasizes the role of the sapiens-specific cerebral torque in determining the four-chambered nature of the human brain in relation to the origins of language and the symptoms of schizophrenia. Future studies of abnormal lateralization of left hemisphere language functions need to take account of the consequences of a failure of lateralization of language functions to the right as well as the left hemisphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stroke is a major cause of death and disability, which involves excessive glutamate receptor activation leading to excitotoxic cell death. We recently reported that SUMOylation can regulate kainate receptor (KAR) function. Here we investigated changes in protein SUMOylation and levels of KAR and AMPA receptor subunits in two different animal stroke models: a rat model of focal ischemia with reperfusion and a mouse model without reperfusion. In rats, transient middle cerebral artery occlusion (MCAO) resulted in a striatal and cortical infarct. A dramatic increase in SUMOylation by both SUMO-1 and SUMO-2/3 was observed at 6h and 24h in the striatal infarct area and by SUMO-2/3 at 24h in the hippocampus, which was not directly subjected to ischemia. In mice, permanent MCAO resulted in a selective cortical infarct. No changes in SUMOylation occurred at 6h but there was increased SUMO-1 conjugation in the cortical infarct and non-ischemic hippocampus at 24h after MCAO. Interestingly, SUMOylation by SUMO-2/3 occurred only outside the infarct area. In both rat and mouse levels of KARs were only decreased in the infarct regions whereas AMPARs were decreased in the infarct and in other brain areas. These results suggest that posttranslational modification by SUMO and down-regulation of AMPARs and KARs may play important roles in the pathophysiological response to ischemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In humans, both language and fine motor skills are associated with left-hemisphere specialization, whereas visuospatial skills are associated with right-hemisphere specialization. Individuals with autism spectrum conditions (ASC) show a profile of deficits and strengths that involves these lateralized cognitive functions. Here we test the hypothesis that regions implicated in these functions are atypically rightward lateralized in individuals with ASC and, that such atypicality is associated with functional performance. Participants included 67 male, right-handed adults with ASC and 69 age- and IQ-matched neurotypical males. We assessed group differences in structural asymmetries in cortical regions of interest with voxel-based analysis of grey matter volumes, followed by correlational analyses with measures of language, motor and visuospatial skills. We found stronger rightward lateralization within the inferior parietal lobule and reduced leftward lateralization extending along the auditory cortex comprising the planum temporale, Heschl's gyrus, posterior supramarginal gyrus, and parietal operculum, which was more pronounced in ASC individuals with delayed language onset compared to those without. Planned correlational analyses showed that for individuals with ASC, reduced leftward asymmetry in the auditory region was associated with more childhood social reciprocity difficulties. We conclude that atypical cerebral structural asymmetry is a potential candidate neurophenotype of ASC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To obtain cerebral perfusion territories of the left, the right. and the posterior circulation in humans with high signal-to-noise ratio (SNR) and robust delineation. Materials and Methods: Continuous arterial spin labeling (CASL) was implemented using a dedicated radio frequency (RF) coil. positioned over the neck, to label the major cerebral feeding arteries in humans. Selective labeling was achieved by flow-driven adiabatic fast passage and by tilting the longitudinal labeling gradient about the Y-axis by theta = +/- 60 degrees. Results: Mean cerebral blood flow (CBF) values in gray matter (GM) and white matter (WM) were 74 +/- 13 mL center dot 100 g(-1) center dot minute(-1) and 14 +/- 13 mL center dot 100 g(-1) center dot minute(-1), respectively (N = 14). There were no signal differences between left and right hemispheres when theta = 0 degrees (P > 0.19), indicating efficient labeling of both hemispheres. When theta = +60 degrees, the signal in GM on the left hemisphere, 0.07 +/- 0.06%, was 92% lower than on the right hemisphere. 0.85 +/- 0.30% (P < 1 x 10(-9)). while for theta = -60 degrees, the signal in the right hemisphere. 0.16 +/- 0.13%, was 82% lower than on the contralateral side. 0.89 +/- 0.22% (P < 1 x 10(-10)). Similar attenuations were obtained in WM. Conclusion: Clear delineation of the left and right cerebral perfusion territories was obtained, allowing discrimination of the anterior and posterior circulation in each hemisphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mirror therapy (MT) is being used as a rehabilitation tool in various diseases, including stroke. Although some studies have shown its effectiveness, little is known about neural mechanisms that underlie the rehabilitation process. Therefore, this study aimed at assessing cortical neuromodulation after a single MT intervention in ischemic stroke survivors, by means of by functional Magnetic Resonance Imaging (fMRI) and Transcranial Magnetic Stimulation (TMS). Fifteen patients participated in a single thirty minutes MT session. fMRI data was analyzed bilaterally in the following Regions of Interest (ROI): Supplementary Motor Area (SMA), Premotor cortex (PMC), Primary Motor cortex (M1), Primary Sensory cortex (S1) and Cerebellum. In each ROI, changes in the percentage of occupation and beta values were computed. Group fMRI data showed a significant decreased in the percentage of occupation in PMC and cerebellum, contralateral to the affected hand (p <0.05). Significant increase in beta values was observed in the following contralateral motor areas: SMA, Cerebellum, PMC and M1 (p<0,005). Moreover, a significant decrease was observed in the following ipsilateral motor areas: PMC and M1 (p <0,001). In S1 a bilateral significant decrease (p<0.0005) was observed.TMS consisted of the analysis of Motor Evoked Potential (MEP) of M1 hotspot. A significant increase in the amplitude of the MEP was observed after therapy in the group (p<0,0001) and individually in 4 patients (p <0.05). Altogether, our results imply that single MT intervention is already capable of promoting changes in neurobiological markers toward patterns observed in healthy subjects. Furthermore, the contralateral hemisphere motor areas changes are opposite to the ones in the ipsilateral side, suggesting an increase system homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Since blood viscosity (BV) is one of the most important factors determining blood flow, this study aimed to investigate the possible correlation between increased blood viscosity and reduction of regional cerebral blood flow (rCBF) in healthy ageing.Methods: Male subjects were distributed in two groups: "young", aged 20-30 (27 volunteers), or "elderly", aged 60-70 (50 volunteers). Whole blood viscosity was obtained with a Wells-Brookfield Cone/Plate Viscometer. Cerebral blood flow was analysed by means of single photon emission computed tomography (SPECT).Results: The mean BV values were 3.28 +/- 0.43 mPa in the group of young volunteers and 4.33 +/- 0.73 mPa in the group of elderly volunteers (t = -6.9, p < 0.0001). The elderly had a lower blood flow than the young in the following regions: bilateral parietal; temporal-parietal and temporal of the left hemisphere. Pearson's correlation between BV and rCBF showed a good inverse correlation when the BV was above 3.95 +/- 0.83 mPa.Conclusions: Our results point to a close relationship between the two parameters analysed, BV and rCBF. The impairment in rCBF observed in the elderly volunteers might be due to an increase in BV, among other factors.Significance: These findings suggest interesting possibilities for the treatment/prevention of brain ageing. (C) 2011 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: ,,,,,Previous studies have demonstrated a relationship between brain oxidative stress and cardiovascular regulation. We evaluated the effects of central catalase inhibition on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke. ,,,, ,,,, ,,,,,METHODS: ,,,,,Male Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SH) (16 weeks old) were implanted with a stainless steel guide cannula leading into the fourth cerebral ventricle (4th V). The femoral artery and vein were cannulated for arterial pressure and heart rate measurement and drug infusion, respectively. The rats were exposed to sidestream cigarette smoke for 180 minutes/day, 5 days/week for 3 weeks (CO: 100-300 ppm). The baroreflex was tested using a pressor dose of phenylephrine (8 μg/kg, bolus) and a depressor dose of sodium nitroprusside (50 μg/kg, bolus). Cardiovascular responses were evaluated before and 5, 15, 30 and 60 minutes after injection of a catalase inhibitor (3-amino-1,2,4-triazole, 0.001 g/100 μL) into the 4th V. ,,,, ,,,, ,,,,,RESULTS: ,,,,,Vehicle administration into the 4th V did not affect the cardiovascular response, whereas administration of the central catalase inhibitor increased the basal HR and attenuated the bradycardic peak (p<0.05) to a greater extent in WKY rats exposed to sidestream cigarette smoke than in WKY rats exposed to fresh air. However, in spontaneously hypertensive rats, the effect of the catalase inhibitor treatment was stronger in the fresh air condition (p<0.05). ,,,, ,,,, ,,,,,CONCLUSION: ,,,,,Administration of a catalase inhibitor into the 4th V combined with exposure to sidestream cigarette smoke has a stronger effect in WKY rats than in SH rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJETIVO: Avaliar a reprodutibilidade de dois modelos experimentais de isquemia e reperfusão cerebral. MÉTODOS: 60 ratos foram distribuídos, aleatoriamente, em três grupos experimentais, com 20 animais cada: I - pinçamento temporário de artéria carótida esquerda; II - cauterização prévia das artérias vertebrais e pinçamento temporário da artéria carótida esquerda; simulado - sem isquemia nem reperfusão. Todos os animais tiveram oclusão definitiva de artéria carótida direita e os três grupos foram subdivididos em dois períodos de reperfusão: A - 60 minutos e B - 120 minutos. Os parâmetros verificados foram: medidas de pressão arterial média sistêmica e fluxo sangüíneo carotídeo; medida de malondialdeído cerebral através do teste TBARS e avaliação histológica do hemisfério cerebral submetido à isquemia e reperfusão. Foi feito também um estudo complementar com angiografia cerebral em 5 animais adicionais. RESULTADOS: Não houve diferenças significativas nas dosagens de malondialdeído cerebral e na freqüência e gravidade das alterações histológicas cerebrais entre os três grupos. Nos grupos GI e GII, a PAM foi significantemente maior no período de isquemia. O fluxo sangüíneo entre os períodos pré e pós-pinçamento aumentou nos grupos IA e IIB, diminuiu no grupo IB e no grupo IIA manteve-se inalterado. As angiografias do estudo complementar mostraram aporte sangüíneo para cérebro através de circulação colateral. CONCLUSÃO: Os modelos de isquemia e reperfusão estudados não demonstraram alterações consistentes de marcadores de lesão cerebral, seja quanto à produção de lipoperóxidos ou de lesões histológicas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Children with cerebral palsy (CP) are regularly confronted with physical constraints during locomotion. Because abnormalities in motor control are often related to perceptual deficits, the aim of this study was to find out whether children with CP were able to walk across a road as safely as their non-handicapped peers. Method: Ten children with CP and 10 non-handicapped children aged 4-14 y were asked to cross a simulated road if they felt the situation was safe. Results: With respect to safety and accuracy of crossings, the behaviour of children with CP was comparable with that of non-handicapped children. However, a closer examination of children's individual crossing behaviour showed considerable differences within the CP group. In contrast to children with damage to the left hemisphere, children with damage to the right hemisphere made unsafe decisions and did not compensate for them by increasing walking speed.Conclusion: the differences in unsafe behaviour and in the ability to compensate for it within the group of children with CP might be related to damage to specific regions of the brain that are involved in the processing of spatial or temporal information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Malária Cerebral (MC) apresenta-se como uma severa complicação resultante da infecção por Plasmodium falciparum. Esta condição encontra-se comumente associada a disfunções cognitivas, comportamentais e motoras, sendo a retinopatia uma das mais graves conseqüências da doença. Diversos modelos experimentais já foram descritos no intuito de elucidar os mecanismos fisiopatológicos relacionados a esta síndrome, no entanto, estes ainda permanecem pouco compreendidos. Dentro deste contexto, o presente trabalho procurou investigar as alterações neuroquímicas envolvidas na patologia da MC. Os camundongos C57Bl/6 (fêmeas e machos) inoculados com ≈106 eritrócitos parasitados (PbA) apresentaram baixa parasitemia (15-20%) com sinais clínicos evidentes como: deficiência respiratória, ataxia, hemiplegia e coma seguido de morte, condizentes com o quadro de MC. A análise no tecido retiniano demonstrou uma diminuição nos níveis de GSH com 2 dias após a inoculação. Entretanto, essa diminuição não foi tão evidente com o decorrer da infecção (4º e 6º dias após infecção). Concomitante a este aumento durante o processo infeccioso, observamos um progressivo aumento na captação de 3H-glutamato (4º e 6º dia após infecção) por um sistema independente de Na+, sugerindo que o quadro de MC é responsável por um aumento na atividade de uma proteína transportadora. Dados obtidos com a imunofluorescência demonstram que além de aumentar a atividade do sistema de transporte, o quadro de MC também estimula o aumento na expressão do sistema xCG - no tecido retiniano. O presente trabalho demonstra ainda que estes eventos neuroquímicos no tecido retiniano são independentes de ativação inflamatória, visto que os níveis de TNF-α e expressão de NOS-2, apresentam-se alterados somente no tecido retiniano.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A regulação fina do volume e osmolaridade dos líquidos corporais é fundamental para a sobrevivência. Qualquer variação na composição do meio interno ativa mecanismos comportamentais, neurais e hormonais compensatórios que controlam a ingestão e excreção de água e eletrólitos a fim de manter a homeostase hidroeletrolítica. Alterações na faixa de 1-2% na osmolaridade sanguínea estimulam a liberação de arginina vasopressina (AVP) que resulta em antidiurese além de ocitocina (OT) e peptídeo natriurético atrial (ANP) que promovem a natriurese. Trabalhos realizados em nosso laboratório utilizando o modelo experimental de expansão do volume extracelular (EVEC) mostraram ativação de neurônios magnocelulares ocitocinérgicos localizados no núcleo paraventricular (PVN) e núcleo supra-óptico (SON) responsáveis pela secreção de OT e AVP, igualmente alteradas em resposta a este estímulo. A participação do sistema nervoso simpático nestas condições tem sido levantada. Projeções medulares e tronco-encefálicas (simpáticas) para o hipotálamo poderiam atuar de forma seletiva inibindo sinalizações para a ingestão e estimulando sinalizações para excreção de água e eletrólitos. O papel de vias noradrenérgicas tronco-encefálicas nesta regulação ainda precisa ser mais bem estabelecido. Assim sendo, objetivamos neste estudo esclarecer o papel do sistema nervoso simpático (via noradrenérgicas) na regulação das alterações induzidas pelo modelo de EVEC, analisando por cromatografia líquida de alta eficácia o conteúdo de noradrenalina (NA), adrenalina (AD) e serotonina (5-HT) em estruturas do tronco cerebral como núcleo do trato solitário (NTS), bulbo rostro-ventro lateral (RVLM), locus coeruleus (LC) e núcleo dorsal da rafe (NDR) e estruturas hipotalâmicas como SON e PVN. Procuramos ainda, através de estudos imunocitoquímicos determinar alterações no padrão de ativação neuronal pela análise de Fos-TH ou Fos-5HT nas estruturas acima mencionadas em condições experimentais nas quais são induzidas alterações do volume do líquido extracelular.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: This experimental study aimed to evaluate the effects of central catalase inhibition on cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS) for 3 weeks. Methodology: A total of 20 males Wistar rats (320–370g) were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4thV). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS for three weeks, 180 minutes per day, 5 days/week [carbon monoxide (CO): 100–300 ppm)]. Baroreflex was tested with one pressor dose of phenylephrine (PHE, 8 μg/kg, bolus) and one depressor dose of sodium nitroprusside (SNP, 50 μg/kg, bolus). Cardiovascular responses were evaluated before and 15 minutes after 3-amino-1, 2, 4-triazole (ATZ, catalase inhibitor, 0.001g/100μL) injection into the 4th V. Results: Vehicle treatment into the 4th V did not change cardiovascular responses. Central catalase inhibition increased tachycardic peak, attenuated bradycardic peak and reduced HR range at 15 minutes, increased MAP at 5, 15 and 30 min and increased HR at 5 and 15 min. In rats exposed to SSCS, central ATZ increased basal MAP after 5 min and increased HR at 5, 15 and 30 minutes, respectively, and attenuated bradycardic peak at 15 minutes. Conclusion: This study suggests that brain oxidative stress caused by SSCS influences autonomic regulation of the cardiovascular system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arterial hypertension is a major risk factor for ischemic stroke. However, the management of preexisting hypertension is still controversial in the treatment of acute stroke in hypertensive patients. The present study evaluates the influence of preserving hypertension during focal cerebral ischemia on stroke outcome in a rat model of chronic hypertension, the spontaneously hypertensive rats (SHR). Focal cerebral ischemia was induced by transient (1 h) occlusion of the middle cerebral artery, during which mean arterial blood pressure was maintained at normotension (110-120 mm Hg, group 1, n=6) or hypertension (160-170 mm Hg, group 2, n=6) using phenylephrine. T2-, diffusion- and perfusion-weighted MRI were performed serially at five different time points: before and during ischemia, and at 1, 4 and 7 days after ischemia. Lesion volume and brain edema were estimated from apparent diffusion coefficient maps and T2-weighted images. Regional cerebral blood flow (rCBF) was measured within and outside the perfusion deficient lesion and in the corresponding regions of the contralesional hemisphere. Neurological deficits were evaluated after reperfusion. Infarct volume, edema, and neurological deficits were significantly reduced in group 2 vs. group 1. In addition, higher values and rapid restoration of rCBF were observed in group 2, while rCBF in both hemispheres was significantly decreased in group 1. Maintaining preexisting hypertension alleviates ischemic brain injury in SHR by increasing collateral circulation to the ischemic region and allowing rapid restoration of rCBF. The data suggest that maintaining preexisting hypertension is a valuable approach to managing hypertensive patients suffering from acute ischemic stroke. Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebral amyloid angiopathy (CAA) is an age-associated disease characterized by amyloid deposition in cerebral and meningeal vessel walls. CAA is detected in the majority of the individuals with dementia and also in a large number of non-demented elderly individuals. In addition, CAA is strongly associated with Alzheimer's disease (AD) pathology. Mechanical consequences including intra-cerebral or subarachnoid hemorrhage remains CAA most feared complication, but only a small fraction of CAA results in severe bleeding. On the hand the non-mechanical consequences in cerebrovascular regulation are prevalent and may be even more deleterious. Studies of animal models have provided strong evidence linking the vasoactive A beta 1-40, the main species found in CAA, to disturbances in endothelial-dependent factors, disrupting cerebrovascular regulation Here, we aimed to review experimental findings regarding the non-mechanical consequences of CAA for cerebrovascular regulation and discuss the implications of these results to clinical practice. (C) 2012 Elsevier Inc. All rights reserved.