954 resultados para CERAMIC SURFACE TREATMENTS
Resumo:
Statement of problem. Surface transformation with nonthermal plasma may be a suitable treatment for dental ceramics, because it does not affect the physical properties of the ceramic material.Purpose. The purpose of this study was to characterize the chemical composition of lithium disilicate ceramic and evaluate the surface of this material after nonthermal plasma treatment.Material and methods. A total of 21 specimens of lithium disilicate (10 mm in diameter and 3 mm thick) were fabricated and randomly divided into 3 groups (n=7) according to surface treatment. The control group was not subjected to any treatment except surface polishing with abrasive paper. In the hydrofluoric acid group, the specimens were subjected to hydrofluoric acid gel before silane application. Specimens in the nonthermal plasma group were subjected to the nonthermal plasma treatment. The contact angle was measured to calculate surface energy. In addition, superficial roughness was measured and was examined with scanning electron microscopy, and the chemical composition was characterized with energy-dispersive spectroscopy analysis. The results were analyzed with ANOVA and the Tukey honestly significant difference test (alpha=.05).Results. The water contact angle was decreased to 0 degrees after nonthermal plasma treatment. No significant difference in surface roughness was observed between the control and nonthermal plasma groups. Scanning electron microscopy and energy-dispersive spectroscopy images indicated higher amounts of oxygen (O) and silicon (Si) and a considerable reduction in carbon (C) in the specimens after nonthermal plasma treatment.Conclusions. Nonthermal plasma treatment can transform the characteristics of a ceramic surface without affecting its surface roughness. A reduction in C levels and an increase in 0 and Si levels were observed with the energy-dispersive spectroscopy analysis, indicating that the deposition of the thin silica film was efficient.
Resumo:
This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Silane + Heat Treatment (oven) + Panavia F; G4: HF 9.6% for 20 s + Silane + Heat Treatment (hot air) + Panavia F; G5: Silane + Heat Treatment (hot air) + Panavia F; G6: Silane + Panavia F. Microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using stereomicroscope and scanning electron microscope (SEM) to categorize the failure types. Data were analyzed statistically using two-way test ANOVA and Tukey's test (=0.05). Heat treatment of the silane containing MDP, with prior etching with HF (G2: 13.15 ± 0.89a; G4: 12.58 ± 1.03a) presented significantly higher bond strength values than the control group (G1: 9.16 ± 0.64b). The groups without prior etching (G3: 10.47 ± 0.70b; G5: 9.47 ± 0.32b) showed statistically similar bond strength values between them and the control group (G1). The silane application without prior etching and heat treatment resulted in the lowest mean bond strength (G6: 8.05 ± 0.37c). SEM analysis showed predominantly adhesive failures and EDS analysis showed common elements of spectra (Si, Na, Al, K, O, C) characterizing the microstructure of the glass-ceramic studied. Heat treatment of the pre-hydrolyzed silane containing MDP in an oven at 100 °C for 2 min or with hot air application at 50 ± 5 ºC for 1 min, was effective in increasing the bond strength values between the ceramic and resin cement containing MDP.
Resumo:
STATEMENT OF PROBLEM: Long-term fluoride application on the teeth of patients receiving radiation therapy for head and neck tumors results in excessive staining and roughening of ceramic restorations. PURPOSE: The purpose of this in vitro study was to compare the staining effects of 2 fluoride treatments on ceramic disks by simulating 1 year of clinical exposure at 10 minutes per day. In addition, 2 different surface preparations were tested. MATERIAL AND METHODS: Eighty ceramic disks (IPS Empress), 20 x 2 mm, were fabricated. Half of the disks were glazed, and the remaining disks were polished. All disks were brushed for 3 minutes with a soft-bristle power toothbrush and mild dentifrice (baseline) and were immersed in 1 of the 2 fluoride products (0.4% SnF(2), Gel-Kam Gel, or 1.1% NaF, Prevident 5000) for 10 days (n=20). Means and standard deviations of color change (Delta E), surface roughness (Ra, um), and surface gloss (GU) of the ceramic material were measured with a reflection spectrophotometer, a profilometer, and a gloss meter, respectively, at baseline and after fluoride treatment. Two- and 3-way ANOVA (alpha=.05), with surface preparation (polished vs. glazed) and fluoride treatment (0.4% SnF(2) or 1.1% NaF) as independent variables and condition (baseline vs. after fluoride treatment) as a repeated measure, was used to analyze the data. Fisher's PLSD intervals (alpha=.05) were calculated for comparisons among the means. RESULTS: The polished specimens had significantly higher Delta E values, significantly higher surface gloss values, and significantly lower surface roughness values than the glazed specimens before fluoride treatment (P<.001). After both fluoride treatments, ceramic disks exhibited significantly higher surface roughness values when polished and significantly lower surface gloss values when glazed or polished (P<.001). The glazed specimens presented significantly higher surface roughness (P<.001) and lower surface gloss values (P<.001) when treated with 0.4% SnF(2) as compared to NaF. For the polished specimens, there was no significant difference in surface roughness and surface gloss values between the 2 fluoride treatments. CONCLUSIONS: Use of 0.4% SnF(2) and 1.1% NaF gels, in vitro, caused significant color change in the polished IPS Empress ceramic disks. Polishing of the ceramic surface before immersion in either fluoride agent caused the ceramic tested to be more resistant to etching by the 2 solutions tested. The NaF caused less deterioration of the porcelain surface and was less stain inducing than SnF(2).
Resumo:
Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.
Resumo:
The solidification behaviour is described of two pure metals (Bi and Ni) and two eutectic alloys (A1-Ge and AI-Cu) under nonequilibrium conditions, in particular the microsecond pulsed laser surface melting. The resolidification behaviour of bismuth shows that epitaxial regrowth is the dominant mechanism. For mixed grain size, regrowth of larger grains dominates the microstructure and can result in the development of texture. In the case of nickel, epitaxial growth has been noted. For lower energy pulse-melted pool, grain refinement takes place, indicating nucleation of fresh nickel grains. The A1-Ge eutectic alloy indicates the nucleation and columnar growth of a metastable monoclinic phase from the melt-substrate interface at a high power density laser irradiation. An equiaxed microstructure containing the same monoclinic phase is obtained at a lower power density laser irradiation. It is shown that the requirement of solution partition acts as a barrier to eutectic regrowth from the substrate. The laser-melted pool of A1-Cu eutectic alloy includes columnar growth of c~-A1 and 0-A12Cu phase followed by the dendritic growth of A12Cu phase with ct-Al forming at the interdendritic space. In addition, a banded microstructure was observed in the resolidified laser-melted pool.
Resumo:
Acquiring detailed knowledge of surface treatments effectiveness is required to improve performance-based decisions for allocating resources to preserve and maintain pavements on any road network. Measurement of treatment effectiveness is a complex task that requires historical records of treatments with observations of before and after performance trends. Lack of data is often an obstacle that impedes development and incorporation of surface maintenance treatments into pavement management. This paper analyzes the effect of surface treatments on asphalt paved arterial roads for several control sections of New Brunswick. The method uses a Transition Probability Matrix to capture main effects by mapping mean trends of surface improvement and pavement structure decay. It was found that surface treatments have an immediate effect reducing the rate of loss of structural capacity. Pavements with international roughness index (IRI) smaller than 1.4 m/km did not seem to benefit from surface treatments. Those with IRI higher than 1.66 m/km gained from 6 to 8 years of additional life. Reset value for surface treatments fall between 1.18 and 1.29 m/km. This paper aims to serve to practitioners seeking to capture and incorporate effectiveness of surface treatments (i.e., crack-sealing) into Pavement Management.
Resumo:
We report the effect of surface treatments on the dynamic conductance curves (G=dI/dV‐V) of Au‐Bi2Sr2CaCu2O8+δ (single crystal) point contact junctions of variable junction conductances (100 mS≳G≳100 μS). We find that if the crystal surface is cleaved freshly just prior to making contacts, all irreproducible sharp multiple features often observed in tunneling data of Bi(2212) oxide superconductors disappear. If the cleaved crystal surfaces are left under ambient conditions for a few days and the tunneling experiments are repeated, these multiple features reappear. We also find that if the current in the junction is made to pass predominantly through the bulk (and not along the surface), gap features are sharper. The observed conductance curves are fitted to a modified model [G. E. Blonder et al., Phys. Rev. B 25, 4515 (1982)] and estimated gap values are Δ≂28 to 30 meV corresponding to the ratio 2Δ/kBTc ≂ 7.5 with lifetime broadening Γ/Δ≂0.2. We conclude that the sharp multiple features observed in Bi(2212) tunneling curves has no intrinsic origin in the bulk and they arise from the surface only.
Resumo:
The fabrication of tissue engineering scaffolds necessitates amalgamation of a multitude of attributes including a desirable porosity to encourage vascular invasion, desired surface chemistry for controlled deposition of calcium phosphate-based mineral as well as ability to support attachment, proliferation, and differentiation of lineage specific progenitor cells. Scaffold fabrication often includes additional surface treatments to bring about desired changes in the surface chemistry. In this perspective, this review documents the important natural and synthetic scaffolds fabricated for bone tissue engineering applications in tandem with the surface treatment techniques to maneuver the biocompatibility of engineered scaffolds. This review begins with a discussion on the fundamental concepts related to biocompatibility as well as the characteristics of the biological micro-environment. The primary focus is to discuss the effects of surface micro/nano patterning on the modulation of bone cell response. Apart from reviewing a host of experimental studies reporting the functionality of osteoblast-like bone cells and stem cells on surface modified or textured bioceramic/biopolymer scaffolds, theoretical insights to predict cell behavior on a scaffold with different topographical features are also briefly analyzed.
Resumo:
Poly-ε-caprolactone (PCL) is a biodegradable and biocompatible polymer used in tissue engineering for various clinical applications. Schwann cells (SCs) play an important role in nerve regeneration and repair. SCs attach and proliferate on PCL films but cellular responses are weak due to the hydrophobicity and neutrality of PCL. In this study, PCL films were hydrolysed and aminolysed to modify the surface with different functional groups and improve hydrophilicity. Hydrolysed films showed a significant increase in hydrophilicity while maintaining surface topography. A significant decrease in mechanical properties was also observed in the case of aminolysis. In vitro tests with Schwann cells (SCs) were performed to assess film biocompatibility. A short-time experiment showed improved cell attachment on modified films, in particular when amino groups were present on the material surface. Cell proliferation significantly increased when both treatments were performed, indicating that surface treatments are necessary for SC response. It was also demonstrated that cell morphology was influenced by physico-chemical surface properties. PCL can be used to make artificial conduits and chemical modification of the inner lumen improves biocompatibility.
Resumo:
Durability of concrete can be improved by applying surface treatments. Pore-lining treatments prevent or delay the ingress of water-borne salts while allowing vapour transfer across the concrete surface. The most common pore-liners are silanes and siloxanes; both reported to give good results. One area of concern, however, is variability in effectiveness of the treatment. This variability may be due to inconsistent coverage or extreme drying conditions. With care these can be controlled but another source of variability which is difficult to control is the moisture profile within the concrete at the time of application of the treatment. This paper describes a test programme to assess the sensitivity of three different surface treatments to moisture gradient in the concrete at the time of application of treatment. The test programme included durability parameters such as chloride ingress, corrosion due to chloride ingress, freeze-thaw salt scaling resistance. Water absorption (sorptivity) of treated and untreated concretes was also measured with a non-distructive test technique called Autoclam with the aim of determining if the Autoclam sorptivity test can be used to assess the effectiveness of surface treatments. Using these results it is possible to avoid, or allow for, moisture conditions which would adversely affect the success of a pore-liner. However there are advantages in specifying an expected performance of the surface treatment rather than specifying the conditions in which it must be placed. By this method a treatment would have to achieve a specified value of sorptivity or a specified reduction in sorptivity. Failure to do so would be an objective basis on which to make a decision of whether or not to reject the treatment. The Autoclam is a device capable of measuring sorptivity values down to the range typical of surface treated concrete. The paper assesses if the device can be used to discriminate between acceptable treatment and unsatisfactory treatments.
Resumo:
β -type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus but is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapour deposition (PVD) and chemical vapour deposition (CVD) are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W CW fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using X-ray diffractometry (XRD), optical microscopy (OM), 3-D surface profile & contact angle measurements and nano-indentation test.
Resumo:
Beta-type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus and is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapor deposition and chemical vapor deposition are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W continuous wave (CW) fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using x-ray diffractometry, optical microscopy, three-dimensional surface profile and contact angle measurements, and nanoindentation test.
Resumo:
Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
The time elapsed between a trauma and tooth replantation usually ranges from 1 to 4 h. The chances of root surface damage are higher when tooth replantation is not performed immediately or if the avulsed tooth is not stored in an adequate medium. This invariably leads to necrosis of pulp tissue, periodontal ligament cells and cementum, thus increasing the possibility of root resorption, which is the main cause of loss of replanted teeth. This paper presents a comprehensive review of literature on root surface treatments performed in cases of delayed tooth replantation with necrotic cemental periodontal ligament. Journal articles retrieved from PubMed/MedLine, Bireme and Scielo databases were reviewed. It was observed that, when there are no periodontal ligament remnants and contamination is under control, replacement resorption and ankylosis are the best results and that, although these events will end up leading to tooth loss, this will happen slowly with no loss of the alveolar ridge height, which is important for future prosthesis planning.
Resumo:
Direct relining of dentures made with hard chairside reline resins is faster than laboratory-processed reline systems and the patient is not without the prosthesis for the time necessary to perform the laboratory procedures. However, a weak bond between the autopolymerizing acrylic reline resins and the denture base material has been observed. This study evaluated the effect of six different surface treatments on the bond strength between a hard chairside reline acrylic resin and ia heat-cured acrylic resin. Specimens of the heat-cured acrylic resin were divided into seven groups. one of these groups remained intact. In the other groups, a 10-mm square section was removed from the centre of each specimen. The bonding surfaces were then treated with (i) methyl methacrylate monomer, (ii) isobutyl methacrylate monomer, (iii) chloroform, (iv) acetone, (v) experimental adhesive and (vi) no surface treatment-control group. Kooliner acrylic resin was packed,into the square sections and polymerized. The bonding strength was evaluated by a three-point loading test. The results were submitted to one-way analysis of variance (ANOVA) followed by a Tukey multiple range test at a 5% level of significance. No significant difference was found between the surface treatment with Lucitone 550 monomer or chloroform, but both were stronger than the majority of the other groups. The bond strength provided by all the surface treatments was lower than that of the intact heat-cured resin.