952 resultados para CELL LYMPHOMA
Resumo:
18-Fluorodeoxyglucose (FDG-PET/CT) is an established imaging modality that has been proven to be of benefit in the management of aggressive B-cell non-Hodgkin's lymphoma, such as diffuse large B-cell lymphoma and advanced stage follicular lymphoma. The combination of anatomic and functional imaging afforded by FDG-PET/CT has led to superior sensitivity and specificity in the primary staging, restaging, and assessment of response to treatment of hematological malignancies when compared to FDG-PET and CT alone. The use of FDG-PET/CT for post treatment surveillance imaging remains controversial, and further study is needed to ascertain whether this modality is cost effective and appropriate for use in this setting.
Resumo:
The pathogenesis of diffuse large B-cell lymphoma (DLBCL) remains partially unknown. The analysis of the B-cell receptor of the malignant cells could contribute to a better understanding of the DLBCL biology. We studied the molecular features of the immunoglobulin heavy chain (IGH) rearrangements in 165 patients diagnosed with DLBCL not otherwise specified. Clonal IGH rearrangements were amplified according to the BIOMED-2 protocol and PCR products were sequenced directly. We also analyzed the criteria for stereotyped patterns in all complete IGHV-IGHD-IGHJ (V-D-J) sequences. Complete V-D-J rearrangements were identified in 130 of 165 patients. Most cases (89%) were highly mutated, but 12 sequences were truly unmutated or minimally mutated. Three genes, IGHV4-34, IGHV3-23, and IGHV4-39, accounted for one third of the whole cohort, including an overrepresentation of IGHV4-34 (15.5% overall). Interestingly, all IGHV4-34 rearrangements and all unmutated sequences belonged to the nongerminal center B-cell-like (non-GCB) subtype. Overall, we found three cases following the current criteria for stereotyped heavy chain VH CDR3 sequences, two of them belonging to subsets previously described in CLL. IGHV gene repertoire is remarkably biased, implying an antigen-driven origin in DLBCL. The particular features in the sequence of the immunoglobulins suggest the existence of particular subgroups within the non-GCB subtype.
Resumo:
Busulfan, cyclophosphamide, and etoposide (BuCyE) is a commonly used conditioning regimen for autologous stem cell transplantation (ASCT). This multicenter, phase II study examined the safety and efficacy of BuCyE with individually adjusted busulfan based on preconditioning pharmacokinetics. The study initially enrolled Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) patients ages 18 to 80 years but was amended due to high early treatment-related mortality (TRM) in patients > 65 years. BuCyE outcomes were compared with contemporaneous recipients of carmustine, etoposide, cytarabine, and melphalan (BEAM) from the Center for International Blood and Marrow Transplant Research. Two hundred seven subjects with HL (n = 66) or NHL (n = 141) were enrolled from 32 centers in North America, and 203 underwent ASCT. Day 100 TRM for all subjects (n = 203), patients > 65 years (n = 17), and patients ≤ 65 years (n = 186) were 4.5%, 23.5%, and 2.7%, respectively. The estimated rates of 2-year progression-free survival (PFS) were 33% for HL and 58%, 77%, and 43% for diffuse large B cell lymphoma (DLBCL; n = 63), mantle cell lymphoma (MCL; n = 29), and follicular lymphoma (FL; n = 23), respectively. The estimated rates of 2-year overall survival (OS) were 76% for HL and 65%, 89%, and 89% for DLBCL, MCL, and FL, respectively. In the matched analysis rates of 2-year TRM were 3.3% for BuCyE and 3.9% for BEAM, and there were no differences in outcomes for NHL. Patients with HL had lower rates of 2-year PFS with BuCyE, 33% (95% CI, 21% to 46%), than with BEAM, 59% (95% CI, 52% to 66%), with no differences in TRM or OS. BuCyE provided adequate disease control and safety in B cell NHL patients ≤ 65 years but produced worse PFS in HL patients when compared with BEAM.
Resumo:
The Epstein-Barr virus (EBV) is associated with a large spectrum of lymphoproliferative diseases. Traditional methods of EBV detection include the immunohistochemical identification of viral proteins and DNA probes to the viral genome in tumoral tissue. The present study explored the detection of the EBV genome, using the BALF5 gene, in the bone marrow or blood mononuclear cells of patients with diffuse large B-cell lymphomas (DLBCL) and related its presence to the clinical variables and risk factors. The results show that EBV detection in 21.5% of patients is not associated with age, gender, staging, B symptoms, international prognostic index scores or any analytical parameters, including lactate dehydrogenase (LDH) or beta-2 microglobulin (B2M). The majority of patients were treated with R-CHOP-like (rituximab. cyclophosphamide, doxorubicin, vincristine and prednisolone or an equivalent combination) and some with CHOP-like chemotherapy. Response rates [complete response (CR) + partial response (PR)] were not significantly different between EBV-negative and -positive cases, with 93.2 and 88.9%, respectively. The survival rate was also similar in the two groups, with 5-year overall survival (OS) rates of 64.3 and 76.7%, respectively. However, when analyzing the treatment groups separately there was a trend in EBV-positive patients for a worse prognosis in patients treated with CHOP-like regimens that was not identified in patients treated with R-CHOP-like regimens. We conclude that EBV detection in the bone marrow and blood mononuclear cells of DLBC patients has the same frequency of EBV detection on tumoral lymphoma tissue but is not associated with the risk factors, response rate and survival in patients treated mainly with immunochemotherapy plus rituximab. These results also suggest that the addition of rituximab to chemotherapy improves the prognosis associated with EBV detection in DLBCL.
Resumo:
Increased serum interleukin-6 (IL-6) is a poor prognostic factor for patients with lymphoma. This may be related to the fact that IL-6 has been shown to be an autocrine and paracrine growth factor for lymphoma cells. We have investigated the regulation of IL-6 in two lymphoma cell lines which produce IL-6 as an autocrine growth factor. The cell lines, LY3 and LY12, were established from two patients with non-Hodgkin's lymphoma. One patient had diffuse large cell lymphoma (LY3), whereas the other had small noncleaved cell lymphoma (LY12). There was no rearrangement or amplification of the IL-6 gene, but we detected IL-1 alpha and TNF production in addition to IL-6. We investigated the effect of inhibitors of IL-1 and TNF on IL-6 production in LY3 and LY12. Our results show that IL-6 production is mainly secondary to endogenous IL-1 production in LY3 cells, however LY12 cells produce IL-6 via a different mechanism since neither anti-IL-1 nor anti-TNF significantly inhibited IL-6 production.^ Transfection of LY12 cells with wildtype and mutant IL-6 promoter-chloramphenicol acetyl transferase constructs, showed increased activity of a trans-acting factor that binds to the NF-kB motif. Therefore, we determined whether there were abnormalities in members of the NF-kB family of transcription factors, such as p65, p50, p52/lyt-10 or rel, which bind to kB motifs. We found increased expression of the p52/lyt-10 transcription factor and activation of the NF-kB pathway in LY12. However, expression of p50, p65 and rel was not increased in LY12 cells. Future investigations could be aimed at determining the effect of inhibitors of NF-kB on IL-6 production. ^
Resumo:
BCL2 is a target of somatic hypermutation in t(14;18) positive and also in a small fraction of t(14;18) negative diffuse large B-cell lymphoma (DLBCL), suggesting an aberrant role of somatic hypermutation (ASHM). To elucidate the prevalence of BCL2 mutations in lymphomas other than DLBCL, we Sanger-sequenced the hypermutable region of the BCL2 gene in a panel of 69 mature B-cell lymphomas, including Richter's syndrome DLBCL, marginal-zone lymphomas, post-transplant lymphoproliferative disorders, HIV-associated and common-variable immunodeficiency-associated DLBCL, all known to harbour ASHM-dependent mutations in other genes, as well as 16 t(14,18) negative and 21 t(14;18) positive follicular lymphomas (FLs). We also investigated the pattern of BCL2 mutations in longitudinal samples from 10 FL patients relapsing to FL or transforming to DLBCL (tFL). By direct sequencing, we found clonally represented BCL2 mutations in 2/16 (13%) of t(14;18) negative FLs, 2/16 (13%) HIV-DLBCLs, 1/9 (11%) of Richter's syndrome DLBCL, 1/17 (6%) of post-transplant lymphoproliferative disorders and 1/2 (50%) common-variable immunodeficiency-associated DLBCL. The proportion of mutated cases was significantly lower than in FLs carrying the t(14;18) translocation (15/21, 71%). However, the absence of t(14;18) by FISH or PCR and the molecular features of the mutations strongly suggest that BCL2 represents an additional target of ASHM in these entities. Analysis of the BCL2 mutation pattern in clonally related FL/FL and FL/tFL samples revealed two distinct scenarios of genomic evolution: (i) direct evolution from the antecedent FL clone, with few novel clonal mutations acquired by the tFL major clone, and (ii) evolution from a common mutated long-lived progenitor cell, which subsequently acquired distinct mutations in the FL and in the relapsed or transformed counterpart. Copyright © 2014 John Wiley & Sons, Ltd.
Resumo:
B-lymphocyte stimulator (BLyS also called BAFF), is a potent cell survival factor expressed in many hematopoietic cells. BLyS levels are elevated in the serum of non-Hodgkin lymphoma (NHL) patients, and have been reported to be associated with disease progression, and prognosis. To understand the mechanisms involved in BLyS gene expression and regulation, we examined expression, function, and regulation of the BLyS gene in B cell non-Hodgkin's lymphoma (NHL-B) cells. BLyS is constitutively expressed in aggressive NHL-B cells including large B cell lymphoma (LBCL) and mantle cell lymphoma (MCL) contributing to survival and proliferation of malignant B cells. Two important transcription factors, NF-κB and NFAT, were found to be involved in regulating BLyS expression through at least one NF-κB and two NFAT binding sites in the BLyS promoter. Further study indicates that the constitutive activation of NF-κB and BLyS in NHL-B cells forms a positive feedback loop contributing to cell survival and proliferation. In order to further investigate BLyS signaling pathway, we studied the function of BAFF-R, a major BLyS receptor, on B cells survival and proliferation. Initial study revealed that BAFF-R was also found in the nucleus, in addition to its presence on plasma membrane of B cells. Nuclear presentation of BAFF-R can be increased by anti-IgM and soluble BLyS treatment in normal peripheral B lymphocytes. Inhibition of BLyS expression decreases nuclear BAFF-R level in LBCL cells. Furthermore, we showed that BAFF-R translocated to nucleus through the classic karyopherin pathway. A candidate nuclear localization sequence (NLS) was identified in the BAFF-R protein sequence and mutation of this putative NLS can block BAFF-R entering nucleus and LBCL cell proliferation. Further study showed that BAFF-R co-localized with NF-κB family member, c-rel in the nucleus. We also found BAFF-R mediated transcriptional activity, which could be increased by c-rel. We also found that nuclear BAFF-R could bind to the NF-κB binding site on the promoters of NF-κB target genes such as BLyS, CD154, Bcl-xL, Bfl-1/A1 and IL-8. These findings indicate that BAFF-R may also promote survival and proliferation of normal B cells and NHL-B cells by directly functioning as a transcriptional co-factor with NF-κB family member. ^
Resumo:
Hairy cell leukaemia variant (HCL-variant) and splenic marginal zone lymphoma (SMZL) are disorders with overlapping features. We investigated the prognostic impact in these disorders of clinical and molecular features including IGH VDJ rearrangements, IGHV gene usage and TP 53 mutations. Clinical and laboratory data were collected before therapy from 35 HCL-variant and 68 SMZL cases. End-points were the need for treatment and overall survival. 97% of HCL-variant and 77% of SMZL cases required treatment (P = 0·009). Survival at 5 years was significantly worse in HCL-variant [57% (95% confidence interval 38-73%)] compared with SMZL [84% (71-91%); Hazard Ratio 2·25 (1·20-4·25), P = 0·01]. In HCL-variant, adverse prognostic factors for survival were older age (P = 0·04), anaemia (P = 0·01) and TP 53 mutations (P = 0·02). In SMZL, splenomegaly, anaemia and IGHV genes with >98% homology to the germline predicted the need for treatment; older age, anaemia and IGHV unmutated genes (100% homology) predicted shorter survival. IGHV gene usage had no impact on clinical outcome in either disease. The combination of unfavourable factors allowed patients to be stratified into risk groups with significant differences in survival. Although HCL-variant and SMZL share some features, they have different outcomes, influenced by clinical and biological factors.
Resumo:
The c-kit proto-oncogen (CD117) has been described to be present in normal and neoplastic hemopoietic cells including both myeloid and lymphoid lineages. Among the normal lymphoid cells CD117 expression would be restricted to a small subset of NK-cells, and to early T-cell precursors and it is not expressed by normal B-cells. Regarding chronic lymphoproliferative disorders the only data provided up to now suggests that CD117 expression is restricted to cases of Hodgkin's disease and anaplastic large-cell lymphoma. In the present paper we describe a case of a B-cell chronic lymphoproliferative disorder carrying the t(14:18) translocation as demonstrated by molecular studies, in which the flow cytometric immunophenotypic analysis of both peripheral blood and bone marrow samples revealed the expression of high amounts of the CD117 antigen in the surface of the clonal B-cell population. Further studies are necessary to explore both the functional role of c-kit expression in the neoplastic B-cells from this patient and its potential utility for the diagnosis and follow-up of patients with B-cell non-Hodgkin's lymphoma.
Resumo:
We employed a Hidden-Markov-Model (HMM) algorithm in loss of heterozygosity (LOH) analysis of high-density single nucleotide polymorphism (SNP) array data from Non-Hodgkin’s lymphoma (NHL) entities, follicular lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL). This revealed a high frequency of LOH over the chromosomal region 11p11.2, containing the gene encoding the protein tyrosine phosphatase receptor type J (PTPRJ). Although PTPRJ regulates components of key survival pathways in B-cells (i.e., BCR, MAPK, and PI3K signaling), its role in B-cell development is poorly understood. LOH of PTPRJ has been described in several types of cancer but not in any hematological malignancy. Interestingly, FL cases with LOH exhibited down-regulation of PTPRJ, in contrast no significant variation of expression was shown in DLBCLs. In addition, sequence screening in Exons 5 and 13 of PTPRJ identified the G973A (rs2270993), T1054C (rs2270992), A1182C (rs1566734), and G2971C (rs4752904) coding SNPs (cSNPs). The A1182 allele was significantly more frequent in FLs and in NHLs with LOH. Significant over-representation of the C1054 (rs2270992) and the C2971 (rs4752904) alleles were also observed in LOH cases. A haplotype analysis also revealed a significant lower frequency of haplotype GTCG in NHL cases, but it was only detected in cases with retention. Conversely, haplotype GCAC was over-representated in cases with LOH. Altogether, these results indicate that the inactivation of PTPRJ may be a common lymphomagenic mechanism in these NHL subtypes and that haplotypes in PTPRJ gene may play a role in susceptibility to NHL, by affecting activation of PTPRJ in these B-cell lymphomas.
Resumo:
Recent developments in genomic technologies have resulted in increased understanding of pathogenic mechanisms and emphasized the importance of central survival pathways. Here, we use a novel bioinformatic based integrative genomic profiling approach to elucidate conserved mechanisms of lymphomagenesis in the three commonest non-Hodgkin's lymphoma (NHL) entities: diffuse large B-cell lymphoma, follicular lymphoma, and B-cell chronic lymphocytic leukemia. By integrating genome-wide DNA copy number analysis and transcriptome profiling of tumor cohorts, we identified genetic lesions present in each entity and highlighted their likely target genes. This revealed a significant enrichment of components of both the apoptosis pathway and the mitogen activated protein kinase pathway, including amplification of the MAP3K12 locus in all three entities, within the set of genes targeted by genetic alterations in these diseases. Furthermore, amplification of 12p13.33 was identified in all three entities and found to target the FOXM1 oncogene. Amplification of FOXM1 was subsequently found to be associated with an increased MYC oncogenic signaling signature, and siRNA-mediated knock-down of FOXM1 resulted in decreased MYC expression and induced G2 arrest. Together, these findings underscore genetic alteration of the MAPK and apoptosis pathways, and genetic amplification of FOXM1 as conserved mechanisms of lymphomagenesis in common NHL entities. Integrative genomic profiling identifies common central survival mechanisms and highlights them as attractive targets for directed therapy.
Resumo:
The t(14;18)(q21;q34) BCL2 translocation is a common genetic alteration in follicular and diffuse large B-cell lymphoma. However, it is not invariably associated with BCL2 gene overexpression due to undefined mechanisms that regulate expression from the proximal immunoglobulin heavy-chain (IgH) promoter. The BACH2 transcriptional repressor is able to modulate activity of this promoter. Here we have shown that, in tumor samples with BCL2 translocation, those with high levels of BACH2 had significantly lower BCL2 transcript abundance compared to those with low levels of BACH2. This indicates that BACH2 may be partially responsible for regulation of BCL2 expression from the t(14;18)(q21;q34) translocation.
Resumo:
FOXP1 is a transcriptional repressor that has been proposed to repress the expression of some NFκB-responsive genes. Furthermore, truncated forms of FOXP1 have been associated with a subtype of Diffuse Large B-cell Lymphoma characterised by constitutive NFκB activity, indicating that they may inhibit this repression. We have shown that FL tumors have increased relative abundance of truncated FOXP1 isoforms and this is associated with increased expression of NFκB-associated genes. Our results provide strong evidence that relative FOXP1 isoform abundance is associated with NFκB activity in FL, and could potentially be used as a marker for this gene signature.
Resumo:
Background The analysis of cellular networks and pathways involved in oncogenesis has increased our knowledge about the pathogenic mechanisms that underlie tumour biology and has unmasked new molecular targets that may lead to the design of better anti-cancer therapies. Recently, using a high resolution loss of heterozygosity (LOH) analysis, we identified a number of potential tumour suppressor genes (TSGs) within common LOH regions across cases suffering from two of the most common forms of Non-Hodgkin’s lymphoma (NHL), Follicular Lymphoma (FL) and Diffuse Large B-cell Lymphoma (DLBCL). From these studies LOH of the protein tyrosine phosphatase receptor type J (PTPRJ) gene was identified as a common event in the lymphomagenesis of these B-cell lymphomas. The present study aimed to determine the cellular pathways affected by the inactivation of these TSGs including PTPRJ in FL and DLBCL tumourigenesis. Results Pathway analytical approaches identified that candidate TSGs located within common LOH regions participate within cellular pathways, which may play a crucial role in FL and DLBCL lymphomagenesis (i.e., metabolic pathways). These analyses also identified genes within the interactome of PTPRJ (i.e. PTPN11 and B2M) that when inactivated in NHL may play an important role in tumourigenesis. We also detected genes that are differentially expressed in cases with and without LOH of PTPRJ, such as NFATC3 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3). Moreover, upregulation of the VEGF, MAPK and ERBB signalling pathways was also observed in NHL cases with LOH of PTPRJ, indicating that LOH-driving events causing inactivation of PTPRJ, apart from possibly inducing a constitutive activation of these pathways by reduction or abrogation of its dephosphorylation activity, may also induce upregulation of these pathways when inactivated. This finding implicates these pathways in the lymphomagenesis and progression of FL and DLBCL. Conclusions The evidence obtained in this research supports findings suggesting that FL and DLBCL share common pathogenic mechanisms. Also, it indicates that PTPRJ can play a crucial role in the pathogenesis of these B-cell tumours and suggests that activation of PTPRJ might be an interesting novel chemotherapeutic target for the treatment of these B-cell tumours.