109 resultados para CDP
Resumo:
Phosphatidylethanolamine is a major phospholipid class of all eukaryotic cells. It can be synthesized via the CDP-ethanolamine branch of the Kennedy pathway, by decarboxylation of phosphatidylserine, or by base exchange with phosphatidylserine. The contributions of these pathways to total phosphatidylethanolamine synthesis have remained unclear. Although Trypanosoma brucei, the causative agent of human and animal trypanosomiasis, has served as a model organism to elucidate the entire reaction sequence for glycosylphosphatidylinositol biosynthesis, the pathways for the synthesis of the major phospholipid classes have received little attention. We now show that disruption of the CDP-ethanolamine branch of the Kennedy pathway using RNA interference results in dramatic changes in phosphatidylethanolamine, phosphatidylserine, and phosphatidylcholine. By targeting individual enzymes of the pathway, we demonstrate that de novo phosphatidylethanolamine synthesis in T. brucei procyclic forms is strictly dependent on the CDP-ethanolamine route. Interestingly, the last step in the Kennedy pathway can be mediated by two separate activities leading to two distinct pools of phosphatidylethanolamine, consisting of predominantly alk-1-enyl-acyl- or diacyl-type molecular species. In addition, we show that phosphatidylserine in T. brucei procyclic forms is synthesized exclusively by base exchange with phosphatidylethanolamine.
Resumo:
OBJECTIVES: To assess the use and appropriateness of medical advice for smoking cessation provided by registrars in a General Medicine Outpatient Department to an unselected patient population in Switzerland. METHODS: A prospective observational study in which 314 consecutive outpatients were contacted by phone within 24h after their consultation. Questions and information concerning smoking asked and/or provided by the registrar to patients were collected. RESULTS: Eleven registrars (mean age 34 years (range 29-40), 54% females, mean of 5 years (range 3.5-6 years) postgraduate medical training) worked in the Basel University Hospital Medical Outpatient Department during the study period from 01.01.2006 to 31.03.2006. In total 314 participants (mean 48 years, age range 16-71 years, 50% females) completed the study. Registrars queried 81% of the patients about smoking, but inquired about smoking duration only in 44% of the patients. Twenty-eight percent of the patients received information about the risks related to smoking, whereas cessation was discussed only with 10% and offered to 9% of the patients. CONCLUSION: Though most junior physicians in the survey asked about smoking, they failed to appropriately address tobacco-related health issues and offer cessation advice in the majority of cases. Extended regular training for physicians on smoking-related issues will be necessary in order to improve counselling of smokers and meet the global tobacco challenge.
Resumo:
Although it is well documented that low self-esteem and depression are related, the precise nature of the relation has been a topic of ongoing debate. We describe several theoretical models concerning the link between self-esteem and depression, and review recent research evaluating the validity of these competing models. Overall, the available evidence provides strong support for the vulnerability model (low self-esteem contributes to depression), weaker support for the scar model (depression erodes self-esteem), and little support for alternative accounts such as the diathesis-stress model. Moreover, the vulnerability model is robust and holds across gender, age, affective-cognitive versus somatic symptoms of depression, European background versus Mexican-origin participants, and clinical versus nonclinical samples. Research on further specifications of the vulnerability model suggests that the effect is (a) partially mediated by rumination, (b) not influenced by other characteristics of self-esteem (i.e., stability and contingency), and (c) driven predominantly by global rather than domain-specific self-esteem. The research has important theoretical implications because it counters the commonly repeated claim that self-esteem has no long-term impact. Moreover, the research has important practical implications, suggesting that depression can be prevented, or reduced, by interventions that improve self-esteem.
Resumo:
Phospholipids are the major component of cellular membranes. In addition to its structural role, phospholipids play an active and diverse role in cellular processes. The goal of this study is to identify the genes involved in phospholipid biosynthesis in a model eukaryotic system, Saccharomyces cerevisiae. We have focused on the biosynthetic steps localized in the inner mitochondrial membrane; hence, the identification of the genes encoding phosphatidylserine decarboxylase (PSD1), cardiolipin synthase (CLS1), and phosphatidylglycerophosphate synthase (PGS1).^ The PSD1 gene encoding a phosphatidylserine decarboxylase was cloned by complementation of a conditional lethal mutation in the homologous gene in Escherichia coli strain EH150. Overexpression of the PSD1 gene in wild type yeast resulted in 20-fold amplification of phosphatidylserine decarboxylase activity. Disruption of the PSD1 gene resulted in 20-fold reduction of decarboxylase activity, but the PSD1 null mutant exhibited essentially normal phenotype. These results suggest that yeast has a second phosphatidylserine decarboxylation activity.^ Cardiolipin is the major anionic phospholipid of the inner mitochondrial membrane. It is thought to be an essential component of many biochemical functions. In eukaryotic cells, cardiolipin synthase catalyzes the final step in the synthesis of cardiolipin from phosphatidylglycerol and CDP-diacylglycerol. We have cloned the gene CLS1. Overexpression of the CLS1 gene product resulted in significantly elevated cardiolipin synthase activity, and disruption of the CLS1 gene, confirmed by PCR and Southern blot analysis, resulted in a null mutant that was viable and showed no petite phenotype. However, phospholipid analysis showed undetectable cardiolipin level and an accumulation of phosphatidylglycerol. These results support the conclusion that CLS1 encodes the cardiolipin synthase of yeast and that normal levels of cardiolipin are not absolutely essential for survival of the cell.^ Phosphatidylglycerophosphate (PGP) synthase catalyzes the synthesis of PGP from CDP-diacylglycerol and glycerol-3-phosphate and functions as the committal and rate limiting step in the biosynthesis of cardiolipin. We have identified the PGS1 gene as encoding the PGP synthase. Overexpression of the PGS1 gene product resulted in over 15-fold increase in in vitro PGP synthase activity. Disruption of the PGS1 gene in a haploid strain of yeast, confirmed by Southern blot analysis, resulted in a null mutant strain that was viable but had significantly altered phenotypes, i.e. inability to grow on glycerol and at $37\sp\circ$C. These cells showed over a 10-fold decrease in PGP synthase activity and a decrease in both phosphatidylglycerol and cardiolipin levels. These results support the conclusion that PGS1 encodes the PGP synthase of yeast and that neither phosphatidylglycerol nor cardiolipin are absolutely essential for survival of the cell. ^
Resumo:
Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are among the most abundant phospholipids in biological membranes. In many eukaryotes, the CDP-ethanolamine and CDP-choline branches of the Kennedy pathway represent major and often essential routes for the production of PE and PC, with ethanolamine and choline/ethanolamine phosphotransferases (EPT and CEPT, respectively) catalysing the last reactions in the respective pathways. Although the site of PE and PC synthesis is commonly known to be the endoplasmic reticulum (ER), detailed information on the localization of the different phosphotransferases is lacking. In the unicellular parasite, Trypanosoma brucei, both branches of the Kennedy pathway are essential for cell growth in culture. We have previously reported that T. brucei EPT (TbEPT) catalyses the production of ether-type PE molecular species while T. brucei CEPT (TbCEPT) synthesizes diacyl-type PE and PC molecular species. We now show that the two enzymes localize to different sub-compartments of the ER. By expressing a series of tagged forms of the two enzymes in T. brucei parasites, in combination with sub-cellular fractionation and enzyme activity measurements, TbEPT was found exclusively in the perinuclear ER, a distinct area located close to but distinct from the nuclear membrane. In contrast, TbCEPT was detected in the bulk ER.
Resumo:
Phosphatidylserine synthase catalyzes the committed step in the synthesis of the major lipid of Escherichia coli, phosphatidylethanolamine, and may be involved in regulating the balance of the zwitterionic and anionic phospholipids in the membrane. Unlike the other enzymes involved in the biosynthesis of phospholipids in E. coli, phosphatidylserine synthase is not membrane associated but seems to have a high affinity for the ribosomal fraction of cells broken by various methods. Investigations on the enzyme in cell free extracts using glycerol gradient centrifugation revealed that the binding of the synthase to ribosomes may be prevented by the presence of highly basic compounds such as spermidine and by the presence of detergent-lipid substrate micelles under assay conditions. Thus phosphatidylserine synthase may not be ribosome associated under physiological conditions but associated with its membrane bound substrate (Louie and Dowhan (1980) J. Biol. Chem. 255, 1124).^ In addition homogeneous enzyme shows many of the properties of a membrane associated protein. It binds nonionic detergent such as Triton X-100, which is also required during purification of the enzyme. Optimal catalytic activity is also dependent on micelle or surface bound substrate. Phosphatidylserine synthase has been synthesized in vitro using a coupled transcription-translation system dependent on the presence of the cloned structural gene. The translation product was found to preferentially associate with the ribosomal fraction even in the presence of added E. coli membranes. Preferential membrane binding could be induced if the membranes were supplemented with the lipid substrate CDP-diacylglycerol. Similar effects were obtained with the acidic lipids phosphatidylglycerol and cardiolipin. On the other hand the zwitterionic lipid phosphatidylethanolamine and the lipid product phosphatidylserine did not cause any detectable membrane association. These results are consistent with the enzyme recognizing membrane bound substrate (Carman and Dowhan (1979) J. Biol. Chem. 254, 8391) and with the lipid charge influencing membrane interaction.^ Phosphatidylserine synthase is at a branch point in lipid metabolism, which may determine the distribution of the zwitterionic and anionic phospholipids in the membrane. The results obtained here indicate phosphatidylserine synthase may play a significant role in membrane lipid biosynthesis by maintaining charge balance of the E. coli membrane. In determining the localization of phosphatidylserine synthase in vitro one may have a better understanding of its function and control in vivo and may also have a better understanding of its role in membrane assembly.^
Resumo:
This research study offers a critical assessment of NIH's Consensus Development Program (CDP), focusing upon its historical and valuative bases and its institutionalization in response to social and political forces. The analysis encompasses systems-level, as well as interpersonal factors in the adoption of consensus as the mechanism for resolving scientific controversies in clinical practice application. Further, the evolution of the CDP is also considered from an ecological perspective as a reasoned adaptation by NIH to pressures from its supporters and clients for translating biomedical research into medical practice. The assessment examines federal science policy and institutional designs for the inclusion of the public interest and democratic deliberation.^ The study relies on three distinct approaches to social research. Conventional historical methods were utilized in the interpretation of social and political influences across eras on the evolution of the National Institutes of Health and its response to demands for accountability and relevance through its Consensus Development Program. An embedded single-case study was utilized for an empirical examination of the CDP mechanism through five exemplar conferences. Lastly, a sociohistorical approach was taken to the CDP in order to consider its responsiveness to the values of the eras which created and shaped it. An exploration of organizational behavior with considerations for institutional reform as a response to continuing political and social pressure, it is a study of organizational birth, growth, and response to demands from its environment. The study has explanatory import in its attempt to account for the creation, timing, and form of the CDP, relative to political, institutional, and cultural pressures, and predictive import thorough its historical view which provides a basis for informed speculation on the playing out of tensions between extramural and intermural scientists and the current demands for health care reform. ^
Resumo:
We use digital seismic reflection profiles within a 1° * 1° survey area on the Cocos Ridge (COCOS6N) to study the extent and timing of sedimentation and sediment redistribution on the Cocos Ridge. The survey was performed to understand how sediment focusing might affect paleoceanographic flux measurements in a region known for significant downslope transport. COCOS6N contains ODP Site 1241 to ground truth the seismic stratigraphy, and there is a seamount ridge along the base of the ridge that forms a basin (North Flank Basin) to trap sediments transported downslope. Using the Site 1241 seismic stratigraphy and densities extrapolated from wireline logging, we document mass accumulation rates (MARs) since 11.2 Ma. The average sediment thickness at COCOS6N is 196 m, ranging from outcropping basalt at the ridge crest to ~ 400 m at North Flank Basin depocenters. Despite significant sediment transport, the average sedimentation over the entire area is well correlated to sediment fluxes at Site 1241. A low mass accumulation rate (MAR) interval is associated with the 'Miocene carbonate crash' interval even though COCOS6N was at the equator at that time and relatively shallow. Highest MAR occurs within the late Miocene-early Pliocene biogenic bloom interval. Lowest average MAR is in the Pleistocene, as plate tectonic motions caused COCOS6N to leave the equatorial productivity zone. The Pliocene and Pleistocene also exhibit higher loss of sediment from the ridge crest and transport to North Flank Basin. Higher tidal energy on the ridge caused by tectonic movement toward the margin increased sediment focusing in the younger section.