619 resultados para CAUSALITY
Resumo:
Crude oil markets witness growing disparity between the quality of crudes supplied and demanded in the market. The market share of low-quality crudes is increasing due to the depletion of old fields and increasing demand. This is unnerving the practitioners and affecting the relevance of the traditional benchmark crudes due to the lack of lower quality benchmarks (Montepeque, 2005). In this article, we apply Granger causality tests to study the price dependence of 32 crudes in order to establish which crudes drive other prices and which ones simply follow general market trends. Our results indicate that some of the old benchmarks are still relevant while others can be disregarded. Our results also interestingly show that the low-quality Mediterranean Russian Urals crude, introduced in the late 1990s, has emerged recently as a significant driver of global prices. © 2011 Taylor & Francis.
How the World Learned to Stop Worrying and Love Failure: Big Data, Resilience and Emergent Causality
Resumo:
In modernity, failure was the discourse of critique, today, it is increasingly the discourse of power: failure has changed its allegiances. Over the last two decades, failure has been enfolded into discourses of power, facilitating the development of new policy approaches. Foremost among governing approaches that seek to include and to govern through failure is that of resilience. This article seeks to reflect upon how the understanding of failure has become transformed in this process, particularly linking this transformation to the radical appreciation of contingency and of the limits to instrumental cause-and-effect approaches to rule. Whereas modernity was shaped by a contestation over failure as an epistemological boundary, under conditions of contingency and complexity there appears to be a new consensus on failure as an ontological necessity. This problematic ‘ontological turn’ is illustrated using examples of changing approaches to risks, especially anthropogenic understandings of environmental threats, formerly seen as ‘natural’.
Resumo:
This is an unusual case of chronic abdominal pain following two liver transplants with at least three potential causes: traumatic neuroma, intussusception of the small bowel of the Roux loop and biliary cast. Surgical removal of the latter two factors led to resolution of the pain. The management of the clinical case is discussed.
Export Behavior and Board Independence in Colombian Family Firms: The Reverse Causality Relationship
Resumo:
In the context of greater market liberalization in Latin America, one issue that merits greater attention for empirical investigation is the international expansion of family-owned business. Specifically, the relationship between export behavior, family control and board composition in the Latin American context is absent in the literature. Using a large and unique database from Colombian firms (33,249 firms in the period of 2008 to 2013), we provide insightful information on the determinants of export behavior of family firms in emerging markets. Our empirical test confirms an endogenous relation between boards’ composition (specifically the presence of independent members) and export behavior in family firms. Firms with a higher participation of independent board members are more likely to exhibit higher levels of exports. A "virtuous cycle" was also detected whereby the introduction of independent members on the board can be expected to boost export behavior, which in turn will encourage the increase of independent members on the board of private firms.
Resumo:
Discourse analysis as a methodology is perhaps not readily associated with substantive causality claims. At the same time the study of discourses is very much the study of conceptions of causal relations among a set, or sets, of agents. Within Europeanization research we have seen endeavours to develop discursive institutional analytical frameworks and something that comes close to the formulation of hypothesis on the effects of European Union (EU) policies and institutions on domestic change. Even if these efforts so far do not necessarily amount to substantive theories or claims of causality, it suggests that discourse analysis and the study of causality are by no means opposites. The study of Europeanization discourses may even be seen as an essential step in the move towards claims of causality in Europeanization research. This paper deals with the question of how we may move from the study of discursive causalities towards more substantive claims of causality between EU policy and institutional initiatives and domestic change.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
O estudo tem como ponto de partida a hipótese de que determinadas ocorrências nosológicas atendidas em pronto-socorro, escolhidas com base no conceito de evento sentinela, podem estar relacionadas a falhas da atenção básica e ser utilizadas na formulação de um indicador para o monitoramento desta atenção. Foram utilizados dados quantitativos e qualitativos sobre ocorrências previamente escolhidas e atendidas em pronto-socorro. Usando-se a triangulação de métodos, verificaram-se as diferenças das freqüências dessas ocorrências entre as áreas/unidades básicas de saúde (UBS) de procedência dos pacientes e as motivações determinantes da procura pelo pronto-socorro. As freqüências das ocorrências apresentaram valores de 30% a 42,8% conforme a área/UBS de procedência (Ç2 = 9,19 e p = 0,027). As entrevistas sugeriram a existência de causalidade entre o motivo declarado da procura do pronto-socorro e a atuação das unidades básicas. Conclui-se que: (1) a freqüência das ocorrências escolhidas foi influenciada pelas áreas/UBS de procedência das pessoas; (2) essa influência decorre, em parte, da situação da atenção básica; (3) o instrumental estudado é simples e pode contribuir para o gestor local no acompanhamento cotidiano da situação dos serviços básicos.
Resumo:
This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the sources of anisotropies inside the past light cone of the observer. This foretold manifestation of causality in position (real) space happens order by order in a series expansion in powers of the visibility gamma = e(-mu), where mu is the optical depth to Thomson scattering. We show that the contributions of order gamma(N) to the cosmic microwave background (CMB) anisotropies are regulated by spacetime window functions which have support only inside the past light cone of the point of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence of the fact that the visibility function becomes exponentially small at redshifts z >> 10(3), effectively cutting off the past light cone and introducing a finite radius inside which initial conditions can affect physical observables measured at our position (x) over right arrow = 0 and time t(0). Hence, for each multipole l there is a discrete tower of momenta k(il) (not a continuum) which can affect physical observables, with the smallest momenta being k(1l) similar to l. The Fourier-Bessel modes take into account precisely the information from the sources of anisotropies that propagates from the initial value surface to the point of observation-no more, no less. We also show that the physical observables (the temperature and polarization maps), and hence the angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel expansion is the optimal scheme with which one can compute CMB anisotropies.
Resumo:
Twisted quantum field theories on the Groenewold-Moyal plane are known to be nonlocal. Despite this nonlocality, it is possible to define a generalized notion of causality. We show that interacting quantum field theories that involve only couplings between matter fields, or between matter fields and minimally coupled U(1) gauge fields are causal in this sense. On the other hand, interactions between matter fields and non-Abelian gauge fields violate this generalized causality. We derive the modified Feynman rules emergent from these features. They imply that interactions of matter with non-Abelian gauge fields are not Lorentz- and CPT-invariant.
Resumo:
Purpose Adverse drug events (ADEs) are harmful and occur with alarming frequency in critically ill patients. Complex pharmacotherapy with multiple medications increases the probability of a drug interaction (DI) and ADEs in patients in intensive care units (ICUs). The objective of the study is to determine the frequency of ADEs among patients in the ICU of a university hospital and the drugs implicated. Also, factors associated with ADEs are investigated. Methods This cross-sectional study investigated 299 medical records of patients hospitalized for 5 or more days in an ICU. ADEs were identified through intensive monitoring adopted in hospital pharmacovigilance and also ADE triggers. Adverse drug reactions (ADR) causality was classified using the Naranjo algorithm. Data were analyzed through descriptive analysis, and through univariate and multiple logistic regression. Results The most frequent ADEs were ADRs type A, of possible causality and moderate severity. The most frequent ADR was drug-induced acute kidney injury. Patients with ADEs related to DIs corresponded to 7% of the sample. The multiple logistic regression showed that length of hospitalization (OR = 1.06) and administration of cardiovascular drugs (OR = 2.2) were associated with the occurrence of ADEs. Conclusion Adverse drug reactions of clinical significance were the most frequent ADEs in the ICU studied, which reduces patient safety. The number of ADEs related to drug interactions was small, suggesting that clinical manifestations of drug interactions that harm patients are not frequent in ICUs.
Resumo:
Motivation: Understanding the patterns of association between polymorphisms at different loci in a population ( linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging. Results: We present a more practical method to build GM that describe LD. The method is based on learning weighted Bayesian network structures from haplotype data, extracting equivalence structure classes and using them to model LD. The results obtained in public data from the HapMap database showed that the method is a promising tool for modeling LD. The associations represented by the learned models are correlated with the traditional measure of LD D`. The method was able to represent LD blocks found by standard tools. The granularity of the association blocks and the readability of the models can be controlled in the method. The results suggest that the causality information gained by our method can be useful to tell about the conservability of the genetic markers and to guide the selection of subset of representative markers.
Resumo:
In this paper a bond graph methodology is used to model incompressible fluid flows with viscous and thermal effects. The distinctive characteristic of these flows is the role of pressure, which does not behave as a state variable but as a function that must act in such a way that the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as independent variables for a single-phase, single-component flow. Time-dependent nodal values and interpolation functions are introduced to represent the flow field, from which nodal vectors of velocity and entropy are defined as state variables. The system for momentum and continuity equations is coincident with the one obtained by using the Galerkin method for the weak formulation of the problem in finite elements. The integral incompressibility constraint is derived based on the integral conservation of mechanical energy. The weak formulation for thermal energy equation is modeled with true bond graph elements in terms of nodal vectors of temperature and entropy rates, resulting a Petrov-Galerkin method. The resulting bond graph shows the coupling between mechanical and thermal energy domains through the viscous dissipation term. All kind of boundary conditions are handled consistently and can be represented as generalized effort or flow sources. A procedure for causality assignment is derived for the resulting graph, satisfying the Second principle of Thermodynamics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In order to provide adequate multivariate measures of information flow between neural structures, modified expressions of partial directed coherence (PDC) and directed transfer function (DTF), two popular multivariate connectivity measures employed in neuroscience, are introduced and their formal relationship to mutual information rates are proved.
Resumo:
Functional magnetic resonance imaging (fMRI) has become an important tool in Neuroscience due to its noninvasive and high spatial resolution properties compared to other methods like PET or EEG. Characterization of the neural connectivity has been the aim of several cognitive researches, as the interactions among cortical areas lie at the heart of many brain dysfunctions and mental disorders. Several methods like correlation analysis, structural equation modeling, and dynamic causal models have been proposed to quantify connectivity strength. An important concept related to connectivity modeling is Granger causality, which is one of the most popular definitions for the measure of directional dependence between time series. In this article, we propose the application of the partial directed coherence (PDC) for the connectivity analysis of multisubject fMRI data using multivariate bootstrap. PDC is a frequency domain counterpart of Granger causality and has become a very prominent tool in EEG studies. The achieved frequency decomposition of connectivity is useful in separating interactions from neural modules from those originating in scanner noise, breath, and heart beating. Real fMRI dataset of six subjects executing a language processing protocol was used for the analysis of connectivity. Hum Brain Mapp 30:452-461, 2009. (C) 2007 Wiley-Liss, Inc.
Resumo:
The reconstruction of a complex scene from multiple images is a fundamental problem in the field of computer vision. Volumetric methods have proven to be a strong alternative to traditional correspondence-based methods due to their flexible visibility models. In this paper we analyse existing methods for volumetric reconstruction and identify three key properties of voxel colouring algorithms: a water-tight surface model, a monotonic carving order, and causality. We present a new Voxel Colouring algorithm which embeds all reconstructions of a scene into a single output. While modelling exact visibility for arbitrary camera locations, Embedded Voxel Colouring removes the need for a priori threshold selection present in previous work. An efficient implementation is given along with results demonstrating the advantages of posteriori threshold selection.