971 resultados para CAUDATE-NUCLEUS LESIONS
Resumo:
Recent functional magnetic resonance imaging (fMRI) investigations of the interaction between cognition and reward processing have found that the lateral prefrontal cortex (PFC) areas are preferentially activated to both increasing cognitive demand and reward level. Conversely, ventromedial PFC (VMPFC) areas show decreased activation to the same conditions, indicating a possible reciprocal relationship between cognitive and emotional processing regions. We report an fMRI study of a rewarded working memory task, in which we further explore how the relationship between reward and cognitive processing is mediated. We not only assess the integrity of reciprocal neural connections between the lateral PFC and VMPFC brain regions in different experimental contexts but also test whether additional cortical and subcortical regions influence this relationship. Psychophysiological interaction analyses were used as a measure of functional connectivity in order to characterize the influence of both cognitive and motivational variables on connectivity between the lateral PFC and the VMPFC. Psychophysiological interactions revealed negative functional connectivity between the lateral PFC and the VMPFC in the context of high memory load, and high memory load in tandem with a highly motivating context, but not in the context of reward alone. Physiophysiological interactions further indicated that the dorsal anterior cingulate and the caudate nucleus modulate this pathway. These findings provide evidence for a dynamic interplay between lateral PFC and VMPFC regions and are consistent with an emotional gating role for the VMPFC during cognitively demanding tasks. Our findings also support neuropsychological theories of mood disorders, which have long emphasized a dysfunctional relationship between emotion/motivational and cognitive processes in depression.
Resumo:
In perceptual terms, the human body is a complex 3d shape which has to be interpreted by the observer to judge its attractiveness. Both body mass and shape have been suggested as strong predictors of female attractiveness. Normally body mass and shape co-vary, and it is difficult to differentiate their separate effects. A recent study suggested that altering body mass does not modulate activity in the reward mechanisms of the brain, but shape does. However, using computer generated female body-shaped greyscale images, based on a Principal Component Analysis of female bodies, we were able to construct images which covary with real female body mass (indexed with BMI) and not with body shape (indexed with WHR), and vice versa. Twelve observers (6 male and 6 female) rated these images for attractiveness during an fMRI study. The attractiveness ratings were correlated with changes in BMI and not WHR. Our primary fMRI results demonstrated that in addition to activation in higher visual areas (such as the extrastriate body area), changing BMI also modulated activity in the caudate nucleus, and other parts of the brain reward system. This shows that BMI, not WHR, modulates reward mechanisms in the brain and we infer that this may have important implications for judgements of ideal body size in eating disordered individuals.
Resumo:
Background: The spectrum approach was used to examine contributions of comorbid symptom dimensions of substance abuse and eating disorder to abnormal prefrontal-cortical and subcortical-striatal activity to happy and fear faces previously demonstrated in bipolar disorder (BD). Method: Fourteen remitted BD-type I and sixteen healthy individuals viewed neutral, mild and intense happy and fear faces in two event-related fMRI experiments. All individuals completed Substance-Use and Eating-Disorder Spectrum measures. Region-of-Interest analyses for bilateral prefrontal and subcortical-striatal regions were performed. Results: BD individuals scored significantly higher on these spectrum measures than healthy individuals (p < 0.05), and were distinguished by activity in prefrontal and subcortical-striatal regions. BD relative to healthy individuals showed reduced dorsal prefrontal-cortical activity to all faces. Only BD individuals showed greater subcortical-striatal activity to happy and neutral faces. In BD individuals, negative correlations were shown between substance use severity and right PFC activity to intense happy faces (p < 0.04), and between substance use severity and right caudate nucleus activity to neutral faces (p < 0.03). Positive correlations were shown between eating disorder and right ventral putamen activity to intense happy (p < 0.02) and neutral faces (p < 0.03). Exploratory analyses revealed few significant relationships between illness variables and medication upon neural activity in BD individuals. Limitations: Small sample size of predominantly medicated BD individuals. Conclusion: This study is the first to report relationships between comorbid symptom dimensions of substance abuse and eating disorder and prefrontal-cortical and subcortical-striatal activity to facial expressions in BD. Our findings suggest that these comorbid features may contribute to observed patterns of functional abnormalities in neural systems underlying mood regulation in BD.
Resumo:
The globus pallidus, together with the striatum (caudate nucleus and putamen), substantia nigra, nucleus accumbens, and subthalamic nucleus constitute the basal ganglia, a group of nuclei which act as a single functional unit. The basal ganglia have extensive connections to the cerebral cortex and thalamus and exert control over a variety of functions including voluntary motor control, procedural learning, and motivation. The action of the globus pallidus is primarily inhibitory and balances the excitatory influence of other areas of the brain such as the cerebral cortex and cerebellum. Neuropathological changes affecting the basal ganglia play a significant role in the clinical signs and symptoms observed in the ‘parkinsonian syndromes’ viz., Parkinson’s disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD). There is increasing evidence that different regions of the basal ganglia are differentially affected in these disorders. Hence, in all parkinsonian disorders and especially PD, there is significant pathology affecting the substantia nigra and its dopamine projection to the striatum. However, in PSP and MSA, the globus pallidus is also frequently affected while in DLB and CBD, whereas the caudate nucleus and/or putamen are affected, the globus pallidus is often spared. This chapter reviews the functional pathways of the basal ganglia, with special reference to the globus pallidus, and the role that differential pathology in these regions may play in the movement disorders characteristic of the parkinsonian syndromes.
Resumo:
BACKGROUND: Previous research has found accumulating evidence for atypical reward processing in autism spectrum disorders (ASD), particularly in the context of social rewards. Yet, this line of research has focused largely on positive social reinforcement, while little is known about the processing of negative reinforcement in individuals with ASD. METHODS: The present study examined neural responses to social negative reinforcement (a face displaying negative affect) and non-social negative reinforcement (monetary loss) in children with ASD relative to typically developing children, using functional magnetic resonance imaging (fMRI). RESULTS: We found that children with ASD demonstrated hypoactivation of the right caudate nucleus while anticipating non-social negative reinforcement and hypoactivation of a network of frontostriatal regions (including the nucleus accumbens, caudate nucleus, and putamen) while anticipating social negative reinforcement. In addition, activation of the right caudate nucleus during non-social negative reinforcement was associated with individual differences in social motivation. CONCLUSIONS: These results suggest that atypical responding to negative reinforcement in children with ASD may contribute to social motivational deficits in this population.
Resumo:
A distributed network of cortical and subcortical brain regions mediates the control of voluntary behavior, but it is unclear how this complex system may flexibly shift between different behavioral events. This thesis describes the neurophysiological changes in several key nuclei across the brain during flexible behavior, using saccadic eye movements in rhesus macaque monkeys. We examined five nuclei critical for saccade initiation and modulation: the frontal eye field (FEF) in the cerebral cortex, the subthalamic nucleus (STN), caudate nucleus (CD), and substantia nigra pars reticulata (SNr) in the basal ganglia (BG), and the superior colliculus (SC) in the midbrain. The first study tested whether a ‘threshold’ theory of how neuronal activity cues saccade initiation is consistent with the flexible control of behavior. The theory suggests there is a fixed level of FEF and SC neuronal activation at which saccades are initiated. Our results provide strong evidence against a fixed saccade threshold in either structure during flexible behavior, and indicate that threshold variability might depend on the level of inhibitory signals applied to the FEF or SC. The next two studies investigated the BG network as a likely candidate to modulate a saccade initiation mechanism, based on strong inhibitory output signals from the BG to the FEF and SC. We investigated the STN and CD (BG input), and the SNr (BG oculomotor output) to examine changes across the BG network. This revealed robust task-contingent shifts in BG signaling (Chapter 3), which uniquely impacted saccade initiation according to behavioral condition (Chapters 3 and 4). The thesis concludes with a published short review of the mechanistic effects of BG deep brain stimulation (Chapter 5), and a general discussion including proof of concept saccade behavioral changes in an MPTP-induced Parkinsonian model (Chapter 6). The studies presented here demonstrate that the conditions for saccade initiation by the FEF and SC vary according to behavioral condition, while simultaneously, large-scale task dependent shifts occur in BG signaling consistent with the observed modulation of FEF and SC activity. Taken together, these describe a mechanistic framework by which the cortico-BG loop may contribute to the flexible control of behavior.
Resumo:
The nucleus of the solitary tract (NTS) is the primary site of the cardiovascular afferent information about arterial blood pressure and volume. The NTS projects to areas in the central nervous system involved in cardiovascular regulation and hydroelectrolyte balance, such as the anteroventral third ventricle region and the lateral parabrachial nucleus. The aim of the present study was to investigate the effects of electrolytic lesion of the commissural NTS on water and 0.3 M NaCl intake and the cardiovascular responses to subcutaneous injection of isoproterenol. Male Holtzman rats weighing 280 to 320 g were submitted to sham lesion or electrolytic lesion of the commissural NTS (N = 6-15/group). The sham-lesioned rats had the electrode placed along the same coordinates, except that no current was passed. Water intake induced by subcutaneous isoproterenol (30 µg/kg body weight) significantly increased in chronic (15 days) commissural NTS-lesioned rats (to 2.4 ± 0.2 vs sham: 1.9 ± 0.2 mL 100 g body weight-1 60 min-1). Isoproterenol did not induce any sodium intake in sham or in commissural NTS-lesioned rats. The isoproterenol-induced hypotension (sham: -27 ± 4 vs commissural NTS-lesioned rats: -22 ± 4 mmHg/20 min) and tachycardia (sham: 168 ± 10 vs commissural NTS: 144 ± 24 bpm/20 min) were not different between groups. The present results suggest that the commissural NTS is part of an inhibitory neural pathway involved in the control of water intake induced by subcutaneous isoproterenol, and that the overdrinking observed in lesioned rats is not the result of a cardiovascular imbalance in these animals.
Resumo:
Ablation of the area postrema/caudal nucleus of the tractus solitarius (NTS) complex increases sodium intake, but the effect of selective lesions of the caudal NTS is not known. We measured depletion-induced sodium intake in rats with electrolytic lesions of the commissural NTS that spared the area postrema. One day after the lesion, rats were depleted of sodium with furosemide (10 mg/kg body weight, sc) and then had access to water and a sodium-deficient diet for 24 h when 1.8% NaCl was offered. Water and saline intakes were measured for 2 h. Saline intake was higher in lesioned than in sham-lesioned rats (mean ± SEM: 20 ± 2 vs 11 ± 3 mL/2 h, P < 0.05, N = 6-7). Saline intake remained elevated in lesioned rats when the tests were repeated 6 and 14 days after the lesion, and water intake in these two tests was increased as well. Water intake seemed to be secondary to saline intake both in lesioned and in sham-lesioned rats. A second group of rats was offered 10% sucrose for 2 h/day before and 2, 7, and 15 days after lesion. Sucrose intake in lesioned rats was higher than in sham-lesioned rats only 7 days after lesioning. A possible explanation for the increased saline intake in rats with commissural NTS lesions could be a reduced gastrointestinal feedback inhibition. The commissural NTS is probably part of a pathway for inhibitory control of sodium intake that also involves the area postrema and the parabrachial nucleus.
Resumo:
It has been suggested that increased sympathetic activity and arterial chemoreceptors are important for the high blood pressure in spontaneously hypertensive rats (SHR). Electrolytic lesions of the commissural nucleus of the solitary tract (commNTS) abolish (1) the cardiovascular responses to chemoreflex activation with potassium cyanide (KCN) in normotensive rats and (2) the hypertension that follows acute aortic baroreceptor denervation in rats. Therefore, in this study we investigated the effects of electrolytic lesions of the commNTS on basal mean arterial pressure (MAP), baroreflex, and chemoreflex in SHR and in normotensive control Wistar-Kyoto (WKY) and Wistar rats. CommNTS lesions elicited a dramatic fall in MAP to normal levels during the period of Study (from the first to fourth day following lesions) in SHR and almost no changes in WKY and Wistar rats. The pressor responses to chemoreflex activation with KCN tested in the days 1 and 4 after commNTS lesions were abolished in SHR and in normotensive strains. The reflex tachycardia induced by sodium nitroprusside was also attenuated in days 1 and 4 after commNTS lesions in SHR, WKY, and Wistar rats. The data suggest that the integrity of commNTS is important for the maintenance or high blood pressure in SHR and for the reflex responses dependent on sympathetic activation either in SHR or in normotensive strains.
Resumo:
Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg/Kg (tiletamine chloridrate 125,0 mg and zolazepan chloridrate 125,0 mg) into quadriceps muscle and submitted an electrolytic lesion of the lateral hypothalamus (LH) and a stainless steel cannula was implanted into their median preoptic nucleus (MnPO). We investigated the effects of the injection into the (MnPO) of FK 409 (20 mug/0.5 mul), a nitric oxide (NO) donor, and N-W-nitro-L-arginine methyl ester (L-NAME) 40 mug/0.5 mul, a nitric oxide synthase inhibitor (NOSI), on the water and sodium appetite and the natriuretic, diuretic and cardiovascular effects induced by injection of L-NAME and FK 409 injected into MnPO in rats with LH lesions. Controls were injected with a similar volume of 0.15 M NaCl. L-NAME injected into MnPO produced an increase in water and sodium intake and in sodium and urine excretion and increase de mean arterial pressure (MAP). FK 409 injected into MnPO did not produce any change in the hydro electrolytic and cardiovascular parameters in LH-sham and lesioned rats. FK 409 injected before L-NAME attenuated its effects. These data show that electrolytic lesion of the LH reduces fluid and sodium intake as well as sodium and urine excretion, and the pressor effect induced by L-NAME. LH involvement with NO of the MnPO excitatory and inhibitory mechanisms related to water and sodium intake, sodium excretion and cardiovascular control is suggested. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study we investigated the influence of a ventromedial hypothalamus (VMH) lesion with ibotenic acid on water and sodium intake and presser responses induced by combined treatment of the median preoptic nucleus (MnPO) with angiotensin Il (ANG II) and adrenergic agonists (phenylephrine, norepinephrine, isoproterenol and clonidine). Male Holtzman rats with a stainless steel cannula implanted into the MnPO and bilateral sham (vehicle) or VMH lesions with ibotenic acid were used. The ingestion of water and sodium and mean arterial pressure (MAP) were determined in separate groups submitted to sodium depletion with the diuretic furosemide (20 mg/rat). ANG II (10 pmol) injection into the MnPO of sham-lesioned rats induced water and sodium intake and presser responses. VMH-lesion reduced ANG II-induced water intake and increased saline intake, In sham rats phenylephrine (80 nmol) into MnPO increased, whereas norepinephrine (80 nmol) and clonidine (40 nmol) reduced ANG II-induced water intake while sodium intake was reduced only by clonidine into MnPO. In VMH-lesioned rats, phenylephrine reduced, noradrenaline increased and clonidine produced no effect on ANG II-induced water intake. In lesioned rats ANG II-induced sodium intake was reduced by phenylephrine and noradrenaline, whereas clonidine produced no change. ANG II-induced presser response was reduced in VMH-lesioned rats, but the presser response combining ANG II and phenylephrine or noradrenaline in VMH-lesioned rats was bigger than sham rats. These results show that the VMH is important for the changes in water and sodium intake and cardiovascular responses induced by angiotensinergic and adrenergic activation of the MnPO. (C) 1997 Elsevier B.V. B.V.
Resumo:
In this-study we investigated the influence of electrolytic lesion of the lateral hypothalamus (LH) on the water and salt appetite, and the natriuretic, diuretic and cardiovascular effects induced by angiotensinergic, cholinergic and noradrenergic stimulation of the median preoptic nucleus (MnPO) in rats. Male Holtzman rats were implanted with a cannula into the MnPO. Other groups of sham- and LH-lesioned rats received a stainless steel cannula implanted into the MnPO. ANGII injection into the MnPO induced water and sodium intake, and natriuretic, diuretic, presser and tachycardic responses. Carbachol induced water intake, and natriuretic, presser and bradycardic responses, whereas noradrenaline increased urine, sodium excretion and blood pressure, and induced bradycardia. In rats submitted to LH-lesion only, water and sodium intake was reduced compared with sham rats. LH lesion also reduced the sodium ingestion induced by ANGII (12 ng) into the MnPO. In LH-lesioned rats, the dipsogenic, diuretic and presser responses induced by ANGII (12 ng), carbachol (2 nmol) and noradrenaline (20 nmol) injection into the MnPO were reduced. The same occurred with sodium excretion when carbachol (2 nmol) and noradrenaline (20 nmol) were injected into the MnPO of LH-lesioned rats, whereas ANGII(12 ng) induced an increase in sodium excretion. These data show that electrolytic lesion of the LH reduces fluid and sodium intake, and presser responses to angiotensinergic, cholinergic and noradrenergic activation of the MnPO. LH involvement with MnPO excitatory and inhibitory mechanisms related to water and sodium intake, sodium excretion and cardiovascular control is suggested.