960 resultados para CATIONIC-POLYMERIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

5-Monocyclopentadienyliron(II)/ruthenium(II) complexes of the general formula [M(5-C5H5)(PP)(L1)][PF6] {M = Fe, PP = dppe; M = Ru, PP = dppe or 2PPh3; L1 = 5-[3-(thiophen-2-yl)benzo[c]thiophenyl]thiophene-2-carbonitrile} have been synthesized and studied to evaluate their molecular quadratic hyperpolarizabilities. The compounds were fully characterized by NMR, FTIR and UV/Vis spectroscopy and their electrochemical behaviour studied by cyclic voltammetry. Quadratic hyperpolarizabilities () were determined by hyper-Rayleigh scattering measurements at a fundamental wavelength of 1500 nm. Density functional theory calculations were employed to rationalize the second-order non-linear optical properties of these complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quando um líquido evita a cristalização durante o arrefecimento, diz-se que entra no estado sobrearrefecido. Se a temperatura continuar a diminuir, o consequente aumento da viscosidade reflecte-se na mobilidade molecular de tal maneira que os tempos característicos se tornam da mesma ordem de grandeza que os tempos acessíveis experimentalmente. Se o arrefecimento continuar, o líquido altamente viscoso acaba por vitrificar, i.e. entra no estado vítreo onde apenas os movimentos locais são permitidos. Os monómeros da família n -etileno glicol dimetacrilato ( n -EGDMA, para n = 1 até 4, que constituem o objecto deste estudo, facilmente evitam a cristalização, sendo pois bons candidatos para estudar a mobilidade molecular nos estados sobrearrefecido e vítreo. A Espectroscopia de Relaxação Dieléctrica (DRS) foi a técnica escolhida para obter informação detalhada sobre a sua dinâmica molecular (Capítulos 1 e 2). A primeira parte deste trabalho consistiu na caracterização dieléctrica dos processos de relaxação existentes acima e abaixo da temperatura de transição vítrea (g T ), a qual aumenta com o aumento do peso molecular (w M ), sendo este resultado confirmado por Calorimetria Diferencial de Varrimento (DSC). No que respeita ao processo cooperativo a , associado à transição vítrea, e ao processo secundário b, observa-se uma dependência com w M , enquanto que o outro processo secundário, g , aparenta ser independente deste factor (Capítulo 3). Nos capítulos seguintes, foram levadas a cabo diferentes estratégias com o objectivo de clarificar os mecanismos que estão na origem destas duas relaxações secundárias (b e g ), assim como conhecer a sua respectiva relação com a relaxação principal (a ). Do estudo, em tempo real, da polimerização isotérmica via radicais livres do TrEGDMA por Calorimetria de Varrimento Diferencial com Modulação de Temperatura (TMDSC), levado a cabo a temperaturas abaixo da g T do polímero final, concluem-se entre outros, dois importantes aspectos: i) que a vitrificação do polímero em formação conduz a graus de conversão relativamente baixos, e ii) que o monómero que está por reagir é expulso da rede polimérica que se forma, dando lugar a uma clara separação de fases (Capítulo 4). Com base nesta informação, o passo seguinte foi estudar separadamente a polimerização isotérmica do di-, tri- e tetra-EGDMA, dando especial atenção às alterações de mobilidade do monómero ainda por reagir. Com as restrições impostas pela formação de ligações químicas, as relaxações a e b detectadas no monómero tendem a desaparecer no novo polímero formado, enquanto que a relaxação g se mantém quase inalterada. Os diferentes comportamentos que aparecem durante a polimerização permitiram a atribuição da origem molecular dos processos secundários: o processo g foi associado ao movimento twisting das unidades etileno glicol, enquanto que a rotação dos grupos carboxilo foi relacionada com a relaxação b (Capítulo 5). No que respeita ao próprio polímero, um processo de relaxação adicional foi detectado, pol b , no poly-DEGDMA, poly-TrEGDMA e poly-TeEGDMA, com características similares ao encontrado nos poli(metacrilato de n -alquilo). Este processo foi confirmado e bem caracterizado aquando do estudo da copolimerização do TrEGDMA com acrilato de metilo (MA) para diferentes composições (Capítulo 6). Para finalizar, o EGDMA, o elemento mais pequeno da família de monómeros estudada, além de vitrificar apresenta uma marcada tendência para cristalizar quer a partir do estado líquido ou do estado vítreo. Durante a cristalização, a formação de uma fase rígida afecta principalmente o processo a , cuja intensidade diminui sem no entanto se observarem modificações significativas na dependência do tempo de relaxação característico com a temperatura. Por outro lado, o processo secundário b torna-se melhor definido e mais estreito, o que pode ser interpretado em termos de uma maior homogeneidade dos micro-ambientes associados aos movimentos locais(Capítulo 7).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a novel surface Smart Polymer Antibody Material (SPAM) for Carnitine (CRT, a potential biomarker of ovarian cancer), tested for the first time as ionophore in potentiometric electrodes of unconventional configuration. The SPAM material consisted of a 3D polymeric network created by surface imprinting on graphene layers. The polymer was obtained by radical polymerization of (vinylbenzyl) trimethylammonium chloride and 4-styrenesulfonic acid (signaling the binding sites), and vinyl pivalate and ethylene glycol dimethacrylate (surroundings). Non-imprinted material (NIM) was prepared as control, by excluding the template from the procedure. These materials were then used to produce several plasticized PVC membranes, testing the relevance of including the SPAM as ionophore, and the need for a charged lipophilic additive. The membranes were casted over solid conductive supports of graphite or ITO/FTO. The effect of pH upon the potentiometric response was evaluated for different pHs (2-9) with different buffer compositions. Overall, the best performance was achieved for membranes with SPAM ionophore, having a cationic lipophilic additive and tested in HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, pH 5.1. Better slopes were achieved when the membrane was casted on conductive glass (-57.4 mV/decade), while the best detection limits were obtained for graphite-based conductive supports (3.6 × 10−5mol/L). Good selectivity was observed against BSA, ascorbic acid, glucose, creatinine and urea, tested for concentrations up to their normal physiologic levels in urine. The application of the devices to the analysis of spiked samples showed recoveries ranging from 91% (± 6.8%) to 118% (± 11.2%). Overall, the combination of the SPAM sensory material with a suitable selective membrane composition and electrode design has lead to a promising tool for point-of-care applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis was developed in collaboration with a Portuguese company, BeyonDevices, devoted to pharmaceutical packaging, medical technology and device industry. Specifically, the composition impact and surface modification of two polymeric medical devices from the company were studied: inhalers and vaginal applicators. The polyethylene-based vaginal applicator was modified using supercritical fluid technology to acquire self-cleaning properties and prevent the transport of bacteria and yeasts to vaginal flora. For that, in-situ polymerization of 2-substituted oxazolines was performed within the polyethylene matrix using supercritical carbon dioxide. The cationic ring-opening polymerization process was followed by end-capping with N,N-dimethyldodecylamine. Furthermore, for the same propose, the polyethylene matrix was impregnated with lavender oil in supercritical medium. The obtained materials were characterized physical and morphologically and the antimicrobial activity against bacteria and yeasts was accessed. Materials modified using 2-substituted oxazolines showed an effective killing ability for all the tested microorganisms, while the materials modified with lavender oil did not show antimicrobial activity. Only materials modified with oligo(2-ethyl-2-oxazoline) maintain the activity during the long term stability. Furthermore, the cytotoxicity of the materials was tested, confirming their biocompatibilty. Regarding the inhaler, its surface was modified in order to improve powder flowability and consequently, to reduce powder retention in the inhaler´s nozzle. New dry powder inhalers (DPIs), with different needle’s diameters, were evaluated in terms of internal resistance and uniformity of the emitted dose. It was observed that they present a mean resistance of 0.06 cmH2O0.5/(L/min) and the maximum emitted dose obtained was 68.9% for the inhaler with higher needle´s diameter (2 mm). Thus, this inhaler was used as a test and modified by the coating with a commonly-used force control agent, magnesium stearate, dried with supercritical carbon dioxide (scCO2) and the uniformity of delivered dose tests were repeated. The modified inhaler showed an increase in emitted dose from 68.9% to 71.3% for lactose and from 30.0% to 33.7% for Foradil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a green methodology, 17 different poly(2-oxazolines) were synthesized starting from four different oxazoline monomers. The polymerization reactions were conducted in supercritical carbon dioxide under a cationic ring-opening polymerization (CROP) mechanism using boron trifluoride diethyl etherate as the catalyst. The obtained living polymers were then end-capped with different types of amines, in order to confer them antimicrobial activity. For comparison, four polyoxazolines were end-capped with water, and by their hydrolysis the linear poly(ethyleneimine) (LPEI) was also produced. After functionalization the obtained polymers were isolated, purified and characterized by standard techniques (FT-IR, NMR, MALDI-TOF and GPC). The synthesized poly(2-oxazolines) revealed an unusual intrinsic blue photoluminescence. High concentration of carbonyl groups in the polymer backbone is appointed as a key structural factor for the presence of fluorescence and enlarges polyoxazolines’ potential applications. Microbiological assays were also performed in order to evaluate their antimicrobial profile against gram-positive Staphylococcus aureus NCTC8325-4 and gram-negative Escherichia coli AB1157 strains, two well known and difficult to control pathogens. The minimum inhibitory concentrations (MIC)s and killing rates of three synthesized polymers against both strains were determined. The end-capping with N,N-dimethyldodecylamine of living poly(2- methyl-2-oxazoline) and poly(bisoxazoline) led to materials with higher MIC values but fast killing rates (less than 5 minutes to achieve 100% killing for both bacterial species) than LPEI, a polymer which had a lower MIC value, but took a longer time to kill both E.coli and S.aureus cells. LPEI achieved 100% killing after 45 minutes in contact with E. coli and after 4 hours in contact with S.aureus. Such huge differences in the biocidal behavior of the different polymers can possibly underlie different mechanisms of action. In the future, studies to elucidate the obtained data will be performed to better understand the killing mechanisms of the polymers through the use of microbial cell biology techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento Biologia Molecular e Ambiental - Especialidade em Biologia Celular e Saúde

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study describes the in vitro phosphorylation of a human hair keratin, using protein kinase for the first time. Phosphorylation of keratin was demonstrated by 31P NMR (Nuclear Magnetic Resonance) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques. Phosphorylation induced a 2.5 fold increase of adsorption capacity in the first 10 minutes for cationic moiety like Methylene Blue (MB). Thorough description of MB adsorption process was performed by several isothermal models. Reconstructed fluorescent microscopy images depict distinct amounts of dye bound to the differently treated hair. The results of this work suggest that the enzymatic phosphorylation of keratins might have significant implications in hair shampooing and conditioning, where short application times of cationic components are of prime importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Casework expercience has shown that, in some cases, long exposures of surfaces subjected to cyanoacrylate (CA) fuming had detrimental effects on the subsequent application of Bluestar. This study aimed to develop a control mechanism to monitor the amount of CA deposited prior to the subsequent treatment. A control slide bearing spots of sodium hydroxide (NaOH) of known concentrations and volume was designed and validated against both scanning electron microscopy (SEM) observations and latent print examiners' assessments of the quality of the developed marks. The control slide allows one to define three levels of development that were used to monitor the Bluestar reaction on depleting footwear marks left in diluted blood. The appropriate conditions for a successful application of both CA and Bluestar were determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel formulations of cationic nanoemulsions based on three different lipids were developed to strengthen the attraction of the polyanionic oligonucleotide (ODN) macromolecules to the cationic moieties on the oil nanodroplets. These formulations were developed to prolong the release of the ODN from the nanoemulsion under appropriate physiological dilutions as encountered in the eye following topical application. Increasing the concentration of the new cationic lipid exhibiting two cationic amine groups (AOA) in the emulsion from 0.05% to 0.4% did not alter markedly the particle size or zeta potential value of the blank cationic nanoemulsion. The extent of ODN association did not vary significantly when the initial concentration of ODN remained constant at 10 microM irrespective of the cationic lipid nature. However, the zeta potential value dropped consistently with the low concentrations of 0.05% and 0.1% of AOA in the emulsions suggesting that an electrostatic attraction occurred between the cationic lipids and the polyanionic ODN molecules at the o/w interface. Only the nanoemulsion prepared with N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium salts (DOTAP) remained physically stable over time. DOTAP cationic lipid nanoemulsion was the most efficient formulation capable of retaining the ODN despite the high dilution of 1:100 with simulated tear solution (STS). Less than 10% of the ODN was exchanged in contrast to 40-50% with the other cationic nanoemulsions. The in-vitro release kinetic behavior of ODN exchange with physiological anions present in the STS appears to be complex and difficult to characterize using mathematical fitting model equations. Further pharmacokinetic studies are needed to verify our kinetic assumptions and confirm the in-vitro ODN release profile from DOTAP cationic nanoemulsions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We read with interest the article by Qiu et al (Thorax 2007;62:475–82). In this paper, neutrophils and eosinophils were identified using mouse anti-human neutrophil elastase and anti-eosinophil cationic protein (ECP), both monoclonal antibodies (mAbs). mAbs against ECP have been used to detect total eosinophils, but immunostaining techniques evidenced that the number of ECP+ cells was higher than the number of eosinophils.1 Recent studies show that ECP is not only a distinctive eosinophil protein, but has been found in neutrophils.1–3

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) are currently under development for the intracellular delivery of therapeutics. However, the mechanisms of cellular uptake and the cellular reaction to this uptake, independent of therapeutics, are not well defined. The interactions of biocompatible cationic aminoUSPIONs with human cells was studied in 2D and 3D cultures using biochemical and electron microscopy techniques. AminoUSPIONs were internalized by human melanoma cells in 2D and 3D cultures. Uptake was clathrin mediated and the particles localized in lysosomes, inducing activation of the lysosomal cathepsin D and decreasing the expression of the transferrin receptor in human melanoma cells and/or skin fibroblasts. AminoUSPIONs deeply invaded 3D spheroids of human melanoma cells. Thus, aminoUSPIONs can invade tumors and their uptake by human cells induces cell reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In alkaline lavas, the chemical zoning of megacrystals of spinel is due to the cationic exchange between the latter and the host lava. The application of Fick's law to cationic diffusion profiles allows to calculate the time these crystals have stayed in the lava. Those which are in a chemical equilibrium were in contact with the lava during 20 to 30 days, whereas megacrystals lacking this equilibrium were in contact only for 3 or 4 days. The duration of the rise of an ultrabasic nodule in the volcanic chimney was calculated by applying Stokes' law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9-10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady? intestinal barrier model or the more permeable mucus-secreting CacoGoblet? model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural features of La2/3Ca1/3MnO3 layers of various thicknesses grown on top of 001 LaAlO3 substrates are studied by using transmission electron microscopy and electron energy loss spectroscopy. Films are of high microstructural quality but exhibit some structural relaxation and mosaicity both when increasing thickness or after annealing processes. The existence of a cationic segregation process of La atoms toward free surface has been detected, as well as a Mn oxidation state variation through layer thickness. La diffusion would lead to a Mn valence change and, in turn, to reduced magnetization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of an antisense oligonucleotide (ODN17) cationic nanoemulsion directed at VEGF-R2 to reduce neovascularization was evaluated using rat corneal neovascularization and retinopathy of prematurity (ROP) mouse models. Application of saline solution or scrambled ODN17 solution on eyes of rats led to the highest extent of corneal neovascularization. The groups treated with blank nanoemulsion or scrambled ODN17 nanoemulsion showed moderate inhibition in corneal neovascularization with no significant difference with the saline and scrambled ODN17 control solution groups, while the groups treated with ODN17 solution or Avastin® (positive ODN17 control) clearly elicited marked significant inhibition in corneal neovascularization confirming the results reported in the literature. The highest significant corneal neovascularization inhibition efficiency was noted in the groups treated with ODN17 nanoemulsion (topical and subconjunctivally). However, in the ROP mouse model, the ODN17 in PBS induced a 34% inhibition of retinal neovascularization when compared to the aqueous-vehicle-injected eyes. A significantly higher inhibition of vitreal neovascularization (64%) was observed in the group of eyes treated with ODN17 nanoemulsion. No difference in extent of neovascularization was observed between blank nanoemulsion, scrambled ODN17 nanoemulsion, vehicle or non-treated eyes. The overall results indicate that cationic nanoemulsion can be considered a promising potential ocular delivery system and an effective therapeutic tool of high clinical significance in the prevention and forthcoming treatment of ocular neovascular diseases.