958 resultados para CATALYTIC ACTIVITY CONCENTRATIONS
Resumo:
The catalytic activity of heteropoly compounds in the oxidation of benzyl alcohol and cyclohexa nol under phase transfer conditions has been studied. The catalytic activity of six kinds of heteropoly acids with Keggin structure will drop by the order of GeMo12 (H4GeMo12O40). PW12, PMo12, SiMo12, GeW12 and SiW12. When the three protons of H3PW12O40 Were replaced by Na+ step by step, the catalytic activity will raise gradually with the drop of acidity. The addition of base and trace amount of sulfuric acid to the reaction system resulted in an increase of catalytic activity. It was found that catalytic activity of mono-lacunary heteropoly compounds is higher than that of the primary heteropoly acids (or salts). The catalytic oxidation system of HPA-H2O2-PTC is very active in the oxidation of benzyl alcohol ana cyclohexanol, but it has little activity in the oxidation of inactive compounds such as n(or iso)-proplalcohol. n-butyl alcohol and n-hexanol. Solvent has great effect on reaction, when polar compounds such as water were used as solvent, the catalytic activity is better than that when non-polar compounds were used as solvent.
Resumo:
The complex of (CH3Cp)2Yb . DME (DME = dimethoxyethane) has been synthesized by the reduction with metallic sodium of the corresponding chloride (CH3CP)2YbCl. (CH3CP)2Yb . DME crystallized from DME in the monoclinic space group Cm, with cell constants a = 11.068(3), b = 12.338(4), c = 12.479(4) angstrom; beta = 100.51(2)-degrees, V = 1675(l) angstrom3, and D0 = 1.66 g/cm3 for Z = 4. Least-squares refinement of 1420 unique observed reflections led to final R of 0.0487. This complex can be used as a catalyst for the polymerization of methyl methacrylate (MMA).
Resumo:
Two series of La1-xSrxNiO3-lambda and La1-1.333xThxNiO3-lambda catalysts have been prepared, and the relationships between the solid defect structure and catalytic activity for NH3 oxidation were measured. The results showed that in the range of x < 0.3, the samples possessed single perovskite-type structure, and as the content of Sr2+ decreased and that of Th4+ increased the catalytic activity increased which was paralleled with the Ni3+ concentration within the catalysts. The active oxygen species (O- or O2(2-)) were present not only on the surface but also in the bulk of the samples. The synergistic effect of transition metal ions with higher oxidation states and randomly distributed oxygen vacancies was the key factor determining catalytic activity of perovskite-type oxides. A redox mechanism for NH3 oxidation over ABO3 is proposed.
Resumo:
A rapid rotation-scan method was used for the electrocatalytic oxidation of H2O2 at a cobalt protoporphyrin modified pyrolytic graphite electrode (CoPP/PG). The rate constant of H2O2 oxidation at the CoPP/PG electrode at different potentials and in different pH solutions was measured. The variation of catalytic activity with reaction charges (Q) passed through the electrode was analyzed. This provided a convenient electrochemical method to study the passivation and poisoning of catalytic sites with time.
Resumo:
The sequence distribution of the monomeric units in the styrene-acrylic acid copolymer has been obtained by calculation. The probability of long sequences of styrene increases with an increase in the content of the monomer in the copolymer. The highest distribution of short sequences of styrene takes place for the copolymer containing equimolecular amounts of styrene and acrylic acid. The copolymer which has this latter structure is inadequate for the synthesis of highly active supported complexes. When the distributions of long and short sequences of styrene are approximately equal, the activity of the Nd and Fe prepared polymer complexes is higher.
Resumo:
A new FeCoMnAPO-5 with AFI structure was synthesized under hydrothermal conditions and characterized by XRD, FT-IR, X-ray fluorescence, nitrogen adsorption and SEM. The oxidation of cyclohexane with molecular oxygen was studied over the catalyst at 403 K. It show d higher activity compared to FeAPO-5, CoAPO-5 and MnAPO-5. The FeCoMnAPO-5 catalyst was recycled twice without loss of activity or selectivity.
Resumo:
Copper nanoparticles were deposited onto mesoporous SBA-15 support via two different routes: post-grafting method and incipient wet impregnation method. Both XRD and TEM reveal that the post-grafting can make Cu particles very small in size and highly dispersed into channels of SBA-15, while the impregnation method mainly forms large Cu particles on the external surface of SBA-15. TPR experiments show that CuO species formed by the post-grafting method is more reducible than that prepared by the impregnation method. The catalytic activity tests for CO oxidation manifests that the sample prepared by the post-grafting method has a much higher activity than that prepared by the impregnation method, with a lowering of 50 degrees C for T-50, showing a strong dependence of catalytic activity on the size and dispersion of Cu particles. Besides the preparation procedure, other factors including calcination temperature, reduction treatment, copper loading as well as the feed composition, have an important effect on the catalytic activity. The best performance was obtained when the catalyst was calcined at 500 degrees C and reduced at 550 degrees C. The calcination and reduction treatment at high temperature have been found to be necessary to completely remove the organic residue and to generate active metallic copper particles. (c) 2005 Elsevier B.V. All rights reserved.