967 resultados para CASPASE-3
Resumo:
Apoptosis and necrosis are two distinct forms of cell death that can occur in response to different agents and stress conditions. In order to verify if the oxidative stress induced by dietary selenium and vitamin E deficiencies can lead muscle cells to apoptosis, one-day-old chicks were reared using diets differing in their vitamin E (0 or 10 IU/kg) and selenium (0 or 0.15 ppm) supplementation. Chick skeletal muscle tissue was obtained from 28-day-old animals and used to verify apoptosis occurrence based on caspase activity detection and DNA fragmentation. Antioxidant deficiency significantly increased caspase-like activity assessed by the hydrolysis of fluorogenic peptide substrates (Abz-peptidyl-EDDnp) at lambdaexc = 320 nm and lambdaem = 420 nm. Proteolytic activation was not accompanied by typical internucleosomal DNA fragmentation detected by field inversion gel electrophoresis. Although the general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl ketone (Z-VAD-fmk) (0 to 80 muM) did not block caspase-like activity when preincubated for 30 min with muscle homogenates, the hydrolyzed substrates presented the same cleavage profile in HPLC (at the aspartic acid residue) when incubated with the purified recombinant enzyme caspase-3. These data indicate that oxidative stress causes caspase-like activation in muscle cells and suggest that cell death associated with exudative diathesis (dietary deficiency of selenium and vitamin E) can follow the apoptotic pathway.
Resumo:
We examined the degeneration of post-mitotic ganglion cells in ex-vivo neonatal retinal explants following axon damage. Ultrastructural features of both apoptosis and autophagy were detected. Degenerating cells reacted with antibodies specific for activated caspase-3 or -9, consistent with the presence of caspase activity. Furthermore, peptidic inhibitors of caspase-9, -6 or -3 prevented cell death (100 µM Ac-LEDH-CHO, 50 µM Ac-VEID-CHO and 10 µM Z-DEVD-fmk, respectively). Interestingly, inhibition of autophagy by 7-10 mM 3-methyl-adenine increased the rate of cell death. Immunohistochemistry data, caspase activation and caspase inhibition data suggest that axotomy of neonatal retinal ganglion cells triggers the intrinsic apoptotic pathway, which, in turn, is counteracted by a pro-survival autophagic response, demonstrated by electron microscopy profiles and pharmacological autophagy inhibitor.
Resumo:
Une mort cellulaire par apoptose impliquant un processus inflammatoire est observée dans le système limbique, suite à un infarctus du myocarde. Les oméga-3 et ses métabolites, en plus de leurs propriétés bénéfiques pour le système cardiovasculaire, réduisent l’inflammation, contrairement aux oméga-6 qui sont plus pro-inflammatoires. Comme le métabolisme de ces deux acides gras essentiels impliquent les mêmes enzymes, le ratio alimentaire oméga-3/6 aurait donc des impacts importants sur l'état inflammatoire et ainsi indirectement sur l'apoptose. Conséquemment, cette étude a pour but d'évaluer l'effet de différents ratios oméga-3/6 sur la taille de l’infarctus, l’inflammation et l’apoptose dans le système limbique suite à un infarctus du myocarde. Des rats Sprague-Dawley ont été aléatoirement distribués dans trois groupes contenant des ratios 1:1, 1:5 et 5:1 oméga-3/6. Ils ont été nourris pendant 2 semaines, suivie d’une occlusion de l’artère coronaire gauche descendante pendant 40 minutes et d’une période de reperfusion (15 min et 24 h). De hauts ratios d’oméga-3 (5:1 et 1:1) diminuent significativement la taille de l’infarctus de 32 % et augmentent l’activité d’Akt, impliquée dans la voie cardioprotectrice RISK, comparativement au ratio 1:5. Ils diminuent aussi la concentration plasmatique de TNF-D. Dans le système limbique, l’activité de la caspase-3 est augmentée dans la région CA1, après 15 min, et dans les régions du CA1 et du gyrus dentelé (Gd), après 24 h, avec la diète 1:5 en comparaison aux diètes 1:1 et 5:1. L’activité enzymatique de la caspase-8 est augmentée dans le Gd, alors que dans le CA1, il y a une activité plus importante de la caspase-9 aux temps de reperfusion étudiés. Conclusion: Les diètes élevées en oméga-3/oméga-6 réduisent la taille de l'infarctus, l’inflammation et diminuent l’apoptose dans le système limbique après un infarctus du myocarde.
Resumo:
L'Infarctus du myocarde (IM) provoque, chez le rat, une augmentation de l'apoptose dans le système limbique en plus d'induire des symptômes qui s'apparentent à la dépression chez l'humain. Nous avons démontré qu'une diète élevée en oméga-3 ou la prise de probiotiques pouvaient être efficaces pour réduire ces effets si ces interventions débutaient avant l'induction de l'ischémie myocardique. Cette étude a pour objectif de déterminer l'efficacité de ces interventions si elles débutent après l'ischémie myocardique. L’IM a été induit chez le rat mâle Sprague-Dawley par l’occlusion de l’artère coronaire descendante antérieure gauche pendant 40 minutes. À la suite de l’ischémie, les rats ont reçu des probiotiques (1 billion de bactéries vivantes de L. helveticus R0052 et de B. longum R0175) ou un véhicule dans leur eau de boisson en présence d'une diète élevée ou faible en oméga-3. À 3 jours post-IM, l’activité enzymatique de la caspase-3 et le nombre de cellules dUTP nick-end labelling (TUNEL) positives sont diminués dans les régions CA1 et le corps godronné de l’hippocampe ainsi que dans l’amygdale en présence de la diète élevée en oméga-3. La prise de probiotiques atténue également l’activité de la caspase-3 et le nombre de cellules TUNEL positives dans le corps godronné et l’amygdale médiane. À 2 semaines post-IM, le comportement dépressif évalué par 3 tests comportementaux (test d’interaction sociale, test de nage forcée et test d’évitement passif) a été observé chez le groupe recevant la diète faible en oméga-3 sans probiotiques et le comportement dépressif a été atténué avec la diète élevée en oméga-3 et/ou la prise de probiotiques. Les probiotiques ont augmenté les niveaux plasmatiques d’interleukine-4 (IL- 4) tandis que la diète élevée en oméga-3 a montré une diminution de la protéine chimiotactique monocytaire 1 (MCP-1). Ces résultats indiquent qu’une diète élevée en oméga-3 ou la prise de probiotiques, débutant à la suite de l’IM, s’avèrent bénéfiques pour atténuer la dépression et l’apoptose dans le système limbique.
Resumo:
Titanocene compounds are a novel series of agents that exhibit cytotoxic effects in a variety of human cancer cells in vitro and in vivo. In this study, the antiproliferative activity of two titanocenes (Titanocenes X and Y) was evaluated in human epidermoid cancer cells in vitro. Titanocenes X and Y induce apoptotic cell death in epidermoid cancer cells, with IC50 values that are comparable to cisplatin. Characterisation of the cell death pathway induced by titanocene compounds in A431 cells revealed that apoptosis is preceded by cell cycle arrest and the inhibition of cell proliferation. The induction of apoptosis is dependent on the activation of caspase-3 and -7 but not caspase-8. Furthermore, the antitumour activity of Titanocene Y was tested in an A431 xenograft model of epidermoid cancer. Results indicate that Titanocene Y significantly reduced the growth of A431 xenografts with an antitumour effect similar to cisplatin. These results suggest that titanocenes represent a novel series of promising antitumour agents.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes a new method for the preparation of sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate, DM-1, and 3-oxo-penta-1,4-dienyl-bis (2-methoxy-phenolate), DM-2. The aim of this work was to evaluate the antitumor effects of DM-1 in adjuvant chemotherapy for breast cancer treatment. Mice bearing mammary adenocarcinomas (Ehrlich ascites tumors) were treated with paclitaxel alone, DM-1 alone, and paclitaxel + DM-1. Tumor samples were used to perform cytological analysis by the Papanicolaou method and apoptosis analysis by annexin V and phosphorylated caspase 3. The paclitaxel + DM-1 group had decreased tumor areas and tumor volumes, and the frequency of metastasis was significantly reduced. This caused a decrease in cachexia, which is usually caused by the tumor. Furthermore, treatment with paclitaxel + DM-1 and DM-1 alone increased the occurrence of apoptosis up to 40% in tumor cells, which is 35% more than in the group treated with paclitaxel alone. This cell death was mainly caused through phosphorylated caspase 3 (11% increase in paclitaxel + DM-1 compared to the paclitaxel group), as confirmed by reduced malignancy criteria in the ascitic fluid. DM-1 emerges as a potential treatment for breast cancer and may act as an adjuvant in chemotherapy, enhancing antitumor drug activity with reduced side effects.
Resumo:
Recent studies have implicated the dying cell as a potential reservoir of modified autoantigens that might initiate and drive systemic autoimmunity in susceptible hosts. A number of subunits of the exosome, a complex of 3'→5' exoribonucleases that functions in a variety of cellular processes, are recognized by the so-called anti-PM/Scl autoantibodies, found predominantly in patients suffering from an overlap syndrome of myositis and scleroderma. Here we show that one of these subunits, PM/Scl-75, is cleaved during apoptosis. PM/Scl-75 cleavage is inhibited by several different caspase inhibitors. The analysis of PM/Scl-75 cleavage by recombinant caspase proteins shows that PM/Scl-75 is efficiently cleaved by caspase-1, to a smaller extent by caspase-8, and relatively inefficiently by caspase-3 and caspase-7. Cleavage of the PM/Scl-75 protein occurs in the C-terminal part of the protein at Asp369 (IILD369↓G), and at least a fraction of the resulting N-terminal fragments of PM/Scl-75 remains associated with the exosome. Finally, the implications of PM/Scl-75 cleavage for exosome function and the generation of anti-PM/Scl-75 autoantibodies are discussed.
Resumo:
Several studies have shown the presence of liver mitochondrial dysfunction during sepsis. TLR3 recognizes viral double-stranded RNA and host endogenous cellular mRNA released from damaged cells. TLR3 ligand amplifies the systemic hyperinflammatory response observed during sepsis and in sepsis RNA escaping from damaged tissues/cells may serve as an endogenous ligand for TLR3 thereby modulating immune responses. This study addressed the hypothesis that TLR3 might regulate mitochondrial function in cultured human hepatocytes. HepG2 cells were exposed to TLR-3 ligand (dsRNA--polyinosine-polycytidylic acid; Poly I:C) and mitochondrial respiration was measured. Poly I:C induced a reduction in maximal mitochondrial respiration of human hepatocytes which was prevented partially by preincubation with cyclosporine A (a mitochondrial permeability transition pore-opening inhibitor). Poly-I:C induced activation of NF-κB, and the mitochondrial dysfunction was accompanied by caspase-8 but not caspase-3 activation and by no major alterations in cellular or mitochondrial ultrastructure.
Resumo:
During the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. A direct and fast activation of caspase-8 by cathepsin D was shown to be crucial in the initial steps of neutrophil apoptosis. Nevertheless, the activation mechanism of caspase-8 remains unclear. Here, by using site-specific mutants of caspase-8, we show that both cathepsin D-mediated proteolysis and homodimerization of caspase-8 are necessary to generate an active caspase-8. At acidic pH, cathepsin D specifically cleaved caspase-8 but not the initiator caspase-9 or -10 and significantly increased caspase-8 activity in dimerizing conditions. These events were completely abolished by pepstatin A, a pharmacological inhibitor of cathepsin D. The cathepsin D intra-chain proteolysis greatly stabilized the active site of caspase-8. Moreover, the main caspase-8 fragment generated by cathepsin D cleavage could be affinity-labeled with the active site probe biotin-VAD-fluoromethyl ketone, suggesting that this fragment is enzymatically active. Importantly, in an in vitro cell-free assay, the addition of recombinant human caspase-8 protein, pre-cleaved by cathepsin D, was followed by caspase-3 activation. Our data therefore indicate that cathepsin D is able to initiate the caspase cascade by direct activation of caspase-8. As cathepsin D is ubiquitously expressed, this may represent a general mechanism to induce apoptosis in a variety of immune and nonimmune cells.
Resumo:
Cell death induction by apoptosis is an important process in the maintenance of tissue homeostasis as well as tissue destruction during various pathological processes. Consequently, detection of apoptotic cells in situ represents an important technique to assess the extent and impact of cell death in the respective tissue. While scoring of apoptosis by histological assessment of apoptotic cells is still a widely used method, it is likely biased by sensitivity problems and observed-based variations. The availability of caspase-mediated neo-epitope-specific antibodies offers new tools for the detection of apoptosis in situ. Here, we discuss the use of immunohistochemical detection of cleaved caspase 3 and lamin A for the assessment of apoptotic cells in paraffin-embedded liver tissue. Furthermore, we evaluate the effect of tissue pretreatment and antigen retrieval on the sensitivity of apoptosis detection, background staining and maintenance of tissue morphology.
Resumo:
Bcl-2 oncogene expression plays a role in the establishment of persistent viral infection by blocking virus-induced apoptosis. This might be achieved by preventing virus-induced activation of caspase-3, an IL-1beta-converting enzyme (ICE)-like cysteine protease that has been implicated in the death effector phase of apoptosis. Contrary to this model, we show that three cell types highly overexpressing functional Bcl-2 displayed caspase-3 activation and underwent apoptosis in response to infection with alphaviruses Semliki Forest and Sindbis as efficiently as vector control counterparts. In all three cell types, overexpressed 26 kDa Bcl-2 was cleaved into a 23 kDa protein. Antibody epitope mapping revealed that cleavage occurred at one or two target sites for caspases within the amino acid region YEWD31 (downward arrow) AGD34 (downward arrow) A, removing the N-terminal BH4 region known to be essential for the death-protective activity of Bcl-2. Preincubation of cells with the caspase inhibitor Z-VAD prevented Bcl-2 cleavage and partially restored the protective activity of Bcl-2 against virus-induced apoptosis. Moreover, a murine Bcl-2 mutant having Asp31, Asp34 and Asp36 substituted by Glu was resistant to proteolytic cleavage and abrogated apoptosis following virus infection. These findings indicate that alphaviruses can trigger a caspase-mediated inactivation of Bcl-2 in order to evade the death protection imposed by this survival factor.
Resumo:
Regulation of tissue size requires fine tuning at the single-cell level of proliferation rate, cell volume, and cell death. Whereas the adjustment of proliferation and growth has been widely studied [1, 2, 3, 4 and 5], the contribution of cell death and its adjustment to tissue-scale parameters have been so far much less explored. Recently, it was shown that epithelial cells could be eliminated by live-cell delamination in response to an increase of cell density [6]. Cell delamination was supposed to occur independently of caspase activation and was suggested to be based on a gradual and spontaneous disappearance of junctions in the delaminating cells [6]. Studying the elimination of cells in the midline region of the Drosophila pupal notum, we found that, contrary to what was suggested before, Caspase 3 activation precedes and is required for cell delamination. Yet, using particle image velocimetry, genetics, and laser-induced perturbations, we confirmed [ 6] that local tissue crowding is necessary and sufficient to drive cell elimination and that cell elimination is independent of known fitness-dependent competition pathways [ 7, 8 and 9]. Accordingly, activation of the oncogene Ras in clones was sufficient to compress the neighboring tissue and eliminate cells up to several cell diameters away from the clones. Mechanical stress has been previously proposed to contribute to cell competition [ 10 and 11]. These results provide the first experimental evidences that crowding-induced death could be an alternative mode of super-competition, namely mechanical super-competition, independent of known fitness markers [ 7, 8 and 9], that could promote tumor growth.
Resumo:
Targeting the proteasome with the sole FDA approved proteasome inhibitor (PI), bortezomib, has been fruitful in specific cancers. Its success has generated an interest in next-generation PIs that might have a therapeutic advantage in cancers, such as leukemia, where bortezomib monotherapy was less effective. This study focuses on a novel, clinically relevant PI, NPI-0052. Experiments show that NPI-0052 targets chymotrypsin- and caspase-like activities more potently than the trypsin-like activity in leukemia cells. NPI-0052 induced apoptosis, as determined by caspase-3 activation and DNA fragmentation. Using caspase inhibitors and caspase-8 (I9.2) or FADD (I2.1) deficient cells revealed that caspase-8 was essential for NPI-0052-induced apoptosis. NPI-0052 killed cells via a caspase-8-tBid-mitochondrial pathway, relying on caspase-8, whereas bortezomib relies on several caspases. NPI-0052 increased reactive oxygen species (ROS) levels, which contributed towards cytotoxicity since an antioxidant conferred protection. To improve the clinical efficacy of PIs, NPI-0052 was combined with epigenetic anti-cancer agents, histone deacetylase inhibitors (HDACi). NPI-0052 with MS-275 or vorinostat (FDA approved HDACi), synergistically induced apoptosis more effectively than an HDACi/bortezomib regimen in Jurkat cells. Caspase-8 and ROS contributed towards NPI-0052/HDACi cytotoxicity and caspase-8 mediated superoxide production by NPI-0052 or NPI-0052/HDACi. The proximal targets of these agents: proteasome activity and histone acetylation were examined to determine if they contributed towards synergistic effects. HDACi targeted proteasomal β subunits and corresponding catalytic activities responsible for degrading proteins. Immunoblotting showed increases in histone-H3 expression and its acetylation with NPI-0052 or NPI-0052/HDACi in Jurkat and primary cells. Importantly, the hyper-acetylation by NPI-0052 was not detected with bortezomib, suggesting that this effect may be unique to NPI-0052. An antioxidant attenuated histone-H3 expression and acetylation induced by NPI-0052 alone or with HDACi. Furthermore, the hyper-acetylation by NPI-0052 relied on caspase-8. These novel results show that a PI is eliciting classical epigenetic alterations, demonstrated by hyper-acetylation of histone-H3. This alteration was oxidant and caspase-8 dependent. Overall, results reveal that caspase-8 mediates many effects induced by NPI-0052. Data show overlapping activities by NPI-0052 and HDACi which are contributing, along with caspase-8 activation and oxidative stress, to cytotoxic interactions in leukemia cells, reinforcing the potential clinical utility of combining these two compounds. ^
Resumo:
The activation of cyclin-dependent kinases (cdks) has been implicated in apoptosis induced by various stimuli. We find that the Fas-induced activation of cdc2 and cdk2 in Jurkat cells is not dependent on protein synthesis, which is shut down very early during apoptosis before caspase-3 activation. Instead, activation of these kinases seems to result from both a rapid cleavage of Wee1 (an inhibitory kinase of cdc2 and cdk2) and inactivation of anaphase-promoting complex (the specific system for cyclin degradation), in which CDC27 homolog is cleaved during apoptosis. Both Wee1 and CDC27 are shown to be substrates of the caspase-3-like protease. Although cdk activities are elevated during Fas-induced apoptosis in Jurkat cells, general activation of the mitotic processes does not occur. Our results do not support the idea that apoptosis is simply an aberrant mitosis but, instead, suggest that a subset of mitotic mechanisms plays an important role in apoptosis through elevated cdk activities.