962 resultados para C-flow
Resumo:
This paper offers numerical modelling of a waste heat recovery system. A thin layer of metal foam is attached to a cold plate to absorb heat from hot gases leaving the system. The heat transferred from the exhaust gas is then transferred to a cold liquid flowing in a secondary loop. Two different foam PPI (Pores Per Inch) values are examined over a range of fluid velocities. Numerical results are then compared to both experimental data and theoretical results available in the literature. Challenges in getting the simulation results to match those of the experiments are addressed and discussed in detail. In particular, interface boundary conditions specified between a porous layer and a fluid layer are investigated. While physically one expects much lower fluid velocity in the pores compared to that of free flow, capturing this sharp gradient at the interface can add to the difficulties of numerical simulation. The existing models in the literature are modified by considering the pressure gradient inside and outside the foam. Comparisons against the numerical modelling are presented. Finally, based on experimentally-validated numerical results, thermo-hydraulic performance of foam heat exchangers as waste heat recovery units is discussed with the main goal of reducing the excess pressure drop and maximising the amount of heat that can be recovered from the hot gas stream.
Resumo:
We have developed a new protein microarray (Immuno-Flow Protein Platform, IFPP) that utilizes a porous nitrocellulose (NC) membrane with printed spots of capture probes. The sample is pumped actively through the NC membrane, to enhance binding efficiency and introduce stringency. Compared to protein microarrays assayed with the conventional incubation-shaking method the rate of binding is enhanced on the IFPP by at least a factor of 10, so that the total assay time can be reduced drastically without compromising sensitivity. Similarly, the sensitivity can be improved. We demonstrate the detection of 1 pM of C-reactive protein (CRP) in 70 mu L of plasma within a total assay time of 7 min. The small sample and reagent volumes, combined with the speed of the assay, make our IFPP also well-suited for a point-of-care/near-patient setting. The potential clinical application of the IFPP is demonstrated by validating CRP detection both in human plasma and serum samples against standard clinical laboratory methods.
Resumo:
Successful prediction of groundwater flow and solute transport through highly heterogeneous aquifers has remained elusive due to the limitations of methods to characterize hydraulic conductivity (K) and generate realistic stochastic fields from such data. As a result, many studies have suggested that the classical advective-dispersive equation (ADE) cannot reproduce such transport behavior. Here we demonstrate that when high-resolution K data are used with a fractal stochastic method that produces K fields with adequate connectivity, the classical ADE can accurately predict solute transport at the macrodispersion experiment site in Mississippi. This development provides great promise to accurately predict contaminant plume migration, design more effective remediation schemes, and reduce environmental risks. Key Points Non-Gaussian transport behavior at the MADE site is unraveledADE can reproduce tracer transport in heterogeneous aquifers with no calibrationNew fractal method generates heterogeneous K fields with adequate connectivity
Resumo:
In this paper we propose a novel approach to multi-action recognition that performs joint segmentation and classification. This approach models each action using a Gaussian mixture using robust low-dimensional action features. Segmentation is achieved by performing classification on overlapping temporal windows, which are then merged to produce the final result. This approach is considerably less complicated than previous methods which use dynamic programming or computationally expensive hidden Markov models (HMMs). Initial experiments on a stitched version of the KTH dataset show that the proposed approach achieves an accuracy of 78.3%, outperforming a recent HMM-based approach which obtained 71.2%.
Resumo:
The transition from a steady to an unsteady flow induced by an adiabatic fin on the sidewall of a differentially heated air-filled cavity is numerically investigated. Numerical simulations have been performed over the range of Rayleigh numbers from Ra = 105–109. The temporal development and spatial structures of natural convection flows in the cavity with a fin are described. It has been demonstrated that the fin may induce the transition to an unsteady flow and the critical Rayleigh number for the occurrence of the transition is between 3.72 × 106 and 3.73 × 106. Furthermore, the peak frequencies of the oscillations triggered by different mechanisms are obtained through spectral analysis. It has been found that the flow rate through the cavity with a fin is larger than that without a fin under the unsteady flow, indicating that the fin may improve the unsteady flow in the cavity.
Resumo:
Double diffusive Marangoni convection flow of viscous incompressible electrically conducting fluid in a square cavity is studied in this paper by taking into consideration of the effect of applied magnetic field in arbitrary direction and the chemical reaction. The governing equations are solved numerically by using alternate direct implicit (ADI) method together with the successive over relaxation (SOR) technique. The flow pattern with the effect of governing parameters, namely the buoyancy ratio W, diffusocapillary ratio w, and the Hartmann number Ha, is investigated. It is revealed from the numerical simulations that the average Nusselt number decreases; whereas the average Sherwood number increases as the orientation of magnetic field is shifted from horizontal to vertical. Moreover, the effect of buoyancy due to species concentration on the flow is stronger than the one due to thermal buoyancy. The increase in diffusocapillary parameter, w caus
Resumo:
The Warburton Basin of central Australia has experienced a complex tectonic and fluid-flow history, resulting in the formation of various authigenic minerals. Geochemical and geochronological analyses were undertaken on vein carbonates from core samples of clastic sediments. Results were then integrated with zircon U–Pb dating and uraninite U–Th–total Pb dating from the underlying granite. Stable and radiogenic isotopes (δ18O, Sr and εNd), as well as trace element data of carbonate veins indicate that >200 °C basinal fluids of evolved meteoric origin circulated through the Warburton Basin. Almost coincidental ages of these carbonates (Sm–Nd; 432 ± 12 Ma) with primary zircon (421 ± 3.8 Ma) and uraninite (407 ± 16 Ma) ages from the granitic intrusion point towards a substantial period of active tectonism and an elevated thermal regime during the mid Silurian. We hypothesise that such a thermal regime may have resulted from extensional tectonism and concomitant magmatic activity following regional orogenesis. This study shows that the combined application of geochemical and geochronological analyses of both primary and secondary species may constrain the timing of tectonomagmatic events and associated fluid flow in intraplate sedimentary basins. Furthermore, this work suggests that the Sm–Nd-isotopic system is surprisingly robust and can record geologically meaningful age data from hydrothermal mineral species.
Resumo:
The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail
Resumo:
The unsteady free convection boundary-layer flow in the forward stagnation-point region of a sphere, which is rotating with time-dependent angular velocity in an ambient fluid, has been studied. Both constant wall temperature and constant hear flux conditions have been considered. The non-linear coupled parabolic partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The skin friction and the heat transfer are enhanced by the buoyancy force. The effect of the buoyancy force is found to be more pronounced for smaller Prandtl numbers than for larger Prandtl numbers. For a given buoyancy force, the heat transfer increases with an increase in Prandtl number, but the skin friction decreases.
Resumo:
The unsteady free convection flow in the stagnation-point region of a heated three-dimensional body placed in an ambient fluid is studied under boundary layer approximations. We have considered the case where there is an initial steady state that is perturbed by a step-change in the wall temperature. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using a finite difference scheme. The presented results show the temporal development of the momentum and thermal boundary layer characteristics.
Resumo:
When freshly starved amoebae of Dictyostelium discoideum are loaded with the Ca2+-specific dye indo-1/AM and analyzed in a fluorescence-activated cell sorter, they exhibit a quasi-bimodal distribution of fluorescence. This permits a separation of the population into two classes: H, or ''high Ca2+-indo-1 fluorescence,'' and L, or ''low Ca2+-indo-1 fluorescence.'' Simultaneous monitoring of Ca2+-indo-1 and Ca2+-chlortetracycline fluorescence shows that by and large the same cells tend to have high (or low) levels of both cytoplasmic and sequestered Ca2+. Next we label H cells with tetramethylrhodamine isothiocyanate (TRITC) and mix them in a 1:4 ratio with L cells, In the slugs that result, TRITC fluorescence is confined mainly to the anterior prestalk region. This implies that amoebae with relatively high Ca2+ at the vegetative stage tend to develop into prestalk cells and those with low Ca2+ into prespores. Polysphondylium violaceum, a cellular slime mold that does not possess prestalk and prespore cells, also does not display a Ca2+-dependent heterogeneity at the vegetative stage or in slugs. Finally, confirming earlier findings with the fluorophore fura-2 (Azhar ef al., Curr. Sci. 68, 337-342 (1995)), a prestalk-prespore difference in cellular Ca2+ is present in the cells of the slug in vivo. These findings are discussed in light of the possible roles of Ca2+ for cell differentiation in D. discoideum.
Resumo:
The unsteady magnetohydrodynamic viscous flow and heat transfer of Newtonian fluids induced by an impulsively stretched plane surface in two lateral directions are studied by using an analytic technique, namely, the homotopy method. The analytic series solution presented here is highly accurate and uniformly valid for all time in the entire region. The effects of the stretching ratio and the magnetic field on the surface shear stresses and heat transfer are studied. The surface shear stresses in x- and y-directions and the surface heat transfer are enchanced by increasing stretching ratio for a fixed value of the magnetic parameter. For a fixed stretching ratio, the surface shear stresses increase with the magnetic parameter, but the heat transfer decreases. The Nusselt number takes longer time to reach the steady state than the skin friction coefficients. There is a smooth transition from the initial unsteady state to the steady state.
Resumo:
Unsteady natural convection flow in a two- dimensional square cavity filled with a porous material has been studied. The flow is initially steady where the left- hand vertical wall has temperature T-h and the right- hand vertical wall is maintained at temperature T-c ( T-h > T-c) and the horizontal walls are insulated. At time t > 0, the left- hand vertical wall temperature is suddenly raised to (T-h) over bar ((T-h) over bar > T-h) which introduces unsteadiness in the flow field. The partial differential equations governing the unsteady natural convection flow have been solved numerically using a finite control volume method. The computation has been carried out until the final steady state is reached. It is found that the average Nusselt number attains a minimum during the transient period and that the time required to reach the final steady state is longer for low Rayleigh number and shorter for high Rayleigh number.
Resumo:
The free convection problem with nonuniform gravity finds applications in several fields. For example, centrifugal gravity fieldsarisein many rotating machinery applications. A gravity field is also created artificially in an orbital space station by rotation. The effect of nonuniform gravity due to the rotation of isothermal or nonisothermal plates has been studied by several authors [l-5] using various mathematical techniques.