959 resultados para C-C bond formation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

(1Z,3Z)-Butyltelluro-o-4-methoxy-1,3-butadiene 2 was obtained by the hydrotelluration of(Z)-1-methoxy-but-1-en-3-ynes 1. The butadienyllithium 3 obtained by the Te/Li exchange reaction in the (1Z,3Z)-1-butyltelluro-4-methoxy-1.3-butadiene 2 reacted with aldehydes to form the corresponding alcohols 4a-d with total retention of configuration. The alcohols formed undergo hydrolysis, resulting in the alpha,beta,gamma,delta-unsaturated aldehydes of (E,E) configuration, which are precursors of trienes obtained from natural sources. The products of this reaction were employed in the synthesis of methyl-(2E,4E)-decadienoate 7, which is a component of the flavor principles of ripe Bartlett pears. Performing the Wittig reaction of the methyl triphenylphosphorane with the deca-(2E,4E)-dienal 5a, we were able to synthesize the undeca-(1,3E,5E)-triene 6a. This compound is a sex-pheromone component of the marine brown algae Fucus serratus, Dictyopteris plagiograma, and Dictyopteris australis. Performing the Wittig reaction of methyl triphenylphosphorane with the octa-(2E,4E)-dienal 5c, the nona-(1,3E,5E)-triene 6b was synthesized. The compound obtained is a sex-pheromone component of the marine brown alga Sargassum horneri. The octa-( 1,3E,5E)-triene 6c was easily obtained from hepta-(2E,4E)-dienal 5d by the Wittig reaction with methyl triphenylphophorane. This compound is a sex-pheromone component of the marine brown alga Fucus serratus. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new, short total synthesis of dihydroactinidiolide 1 is described using selenium carbenium ion-promoted carbon-carbon bond formation as the key step. Our synthetic strategy starts with a lactonization reaction between 1,3,3-trimethylcyclohexene 13 and alpha-chloro-alpha-phenylseleno ethyl acetate 14, affording the key intermediate, alpha-phenylseleno-gamma-butyro lactone 15, which reacted via a selenoxide elimination to the target compound 1. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficient and correct folding of bacterial disulfide bonded proteins in vivo is dependent upon a class of periplasmic oxidoreductase proteins called DsbA, after the Escherichia coli enzyme. In the pathogenic bacterium Vibrio cholerae, the DsbA homolog (TcpG) is responsible for the folding, maturation and secretion of virulence factors. Mutants in which the tcpg gene has been inactivated are avirulent; they no longer produce functional colonisation pill and they no longer secrete cholera toxin. TcpG is thus a suitable target for inhibitors that could counteract the virulence of this organism, thereby preventing the symptoms of cholera. The crystal structure of oxidized TcpG (refined at a resolution of 2.1 Angstrom) serves as a starting point for the rational design of such inhibitors. As expected, TcpG has the same fold as E. coli DsbA, with which it shares similar to 40% sequence identity. Ln addition, the characteristic surface features of DsbA are present in TcpG, supporting the notion that these features play a functional role. While the overall architecture of TcpG and DsbA is similar and the surface features are retained in TcpG, there are significant differences. For example, the kinked active site helix results from a three-residue loop in DsbA, but is caused by a proline in TcpG (making TcpG more similar to thioredoxin in this respect). Furthermore, the proposed peptide binding groove of TcpG is substantially shortened compared with that of DsbA due to a six-residue deletion. Also, the hydrophobic pocket of TcpG is more shallow and the acidic patch is much less extensive than that of E. coli DsbA. The identification of the structural and surface features that are retained or are divergent in TcpG provides a useful assessment of their functional importance in these protein folding catalysts and is an important prerequisite for the design of TcpG inhibitors. (C) 1997 Academic Press Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

t Disulfide-bond (Dsb) proteins are a family of redox proteins containing a Cys-X-X-Cys motif. They are essential for disulfide-bond exchange in the bacterial periplasm and are necessary for the correct folding and function of many secreted proteins. CcmG (DsbE) is a reducing Dsb protein required for cytochrome c maturation. Crystals of Bradyrhizobium japonicum CcmG have been obtained that diffract X-rays to 1.14 Angstrom resolution. The crystals are orthorhombic, space group P2(1)2(1)2(1), with unit-cell parameters a = 35.1, b = 48.2, c = 90.2 Angstrom. Selenomethionine CcmG was expressed without using a methionine auxotroph or methionine-pathway inhibition and was purified without reducing agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CcmG is unlike other periplasmic thioredoxin (TRX)like proteins in that it has a specific reducing activity in an oxidizing environment and a high fidelity of interaction. These two unusual properties are required for its role in c-type cytochrome maturation. The crystal structure of CcmG reveals a modified TRX fold with an unusually acidic active site and a groove formed from two inserts in the fold. Deletion of one of the groove-forming inserts disrupts c-type cytochrome formation. Two unique structural features of CcmG-an acidic active site and an adjacent groove-appear to be necessary to convert an indiscriminately binding scaffold, the TRX fold, into a highly specific redox protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize the Flory-Stockmayer theory of percolation to a model of associating (patchy) colloids, which consists of hard spherical particles, having on their surfaces f short-ranged-attractive sites of m different types. These sites can form bonds between particles and thus promote self-assembly. It is shown that the percolation threshold is given in terms of the eigenvalues of a m x m matrix, which describes the recursive relations for the number of bonded particles on the ith level of a cluster with no loops; percolation occurs when the largest of these eigenvalues equals unity. Expressions for the probability that a particle is not bonded to the giant cluster, for the average cluster size and the average size of a cluster to which a randomly chosen particle belongs, are also derived. Explicit results for these quantities are computed for the case f = 3 and m = 2. We show how these structural properties are related to the thermodynamics of the associating system by regarding bond formation as a (equilibrium) chemical reaction. This solution of the percolation problem, combined with Wertheim's thermodynamic first-order perturbation theory, allows the investigation of the interplay between phase behavior and cluster formation for general models of patchy colloids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of a dichloromethane solution of trans-[Mo(NCN){NCNC(O)R}(dppe)(2)]Cl [R = Me (1a), Et (1b)] (dppe = Ph2PCH2CH2PPh2) with HBF4, [Et3O][BF4] or EtC(O)Cl gives trans-[Mo(NCN)Cl-(dppe)(2)]X [X = BF4 (2a) or Cl (2b)] and the corresponding acylcyanamides NCN(R')C(O)Et (R' = H, Et or C(O)Et). X-ray diffraction analysis of 2a (X = BF4) reveals a multiple-bond coordination of the cyanoimide ligand. Compounds 1 convert to the bis(cyanoimide) trans-[Mo(NCN)(2)(dppe)(2)] complex upon reaction with an excess of NaOMe (with formation of the respective ester). In an aprotic medium and at a Pt electrode, compounds 1 (R = Me, Et or Ph) undergo a cathodically induced isomerization. Full quantitative kinetic analysis of the voltammetric behaviour is presented and allows the determination of the first-order rate constants and the equilibrium constant of the trans to cis isomerization reaction. The mechanisms of electrophilic addition (protonation) to complexes 1 and the precursor trans[Mo(NCN)(2)(dppe)(2)], as well as the electronic structures, nature of the coordination bonds and electrochemical behaviour of these species are investigated in detail by theoretical methods which indicate that the most probable sites of the proton attack are the oxygen atom of the acyl group and the terminal nitrogen atom, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quartz veins ranging in size from less than 50 cm length and 5 cm width to greater than 10 m in length and 5 m in width are found throughout the Central Swiss Alps. In some cases, the veins are completely filled with milky quartz, while in others, sometimes spectacular void-filling quartz crystals are found. The style of vein filling and size is controlled by host rock composition and deformation history. Temperatures of vein formation, estimated using stable isotope thermometry and mineral equilibria, cover a range of 450 degrees C down to 150 degrees C. Vein formation started at 18 to 20 Ma and continued for over 10 My. The oxygen isotope values of quartz veins range from 10 to 20 permil, and in almost all cases are equal to those of the hosting lithology. The strongly rock-buffered veins imply a low fluid/rock ratio and minimal fluid flow. In order to explain massive, nearly morromineralic quartz formation without exceptionally large fluid fluxes, a mechanism of differential pressure and silica diffusion, combined with pressure solution, is proposed for early vein formation. Fluid inclusions and hydrous minerals in late-formed veins have extremely low delta D values, consistent with meteoric water infiltration. The change from rock-buffered, static fluid to infiltration from above can be explained in terms of changes in the large-scale deformation style occurring between 20 and 15 Ma. The rapid cooling of the Central Alps identified in previous studies may be explained in part, by infiltration of cold meteoric waters along fracture systems down to depths of 10 km or more. An average water flux of 0.15 cm 3 cm(-2)yr(-1) entering the rock and reemerging heated by 40 degrees C is sufficient to cool rock at 10 km depth by 100 degrees C in 5 million years. The very negative delta D values of < -130 permil for the late stage fluids are well below the annual average values measured in meteoric water in the region today. The low fossil delta D values indicate that the Central Alps were at a higher elevation in the Neogene. Such a conclusion is supported by an earlier work, where a paleoaltitude of 5000 meters was proposed on the basis of large erratic boulders found at low elevations far from their origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyaline Fibromatosis Syndrome (HFS) is a human genetic disease caused by mutations in the anthrax toxin receptor 2 (or cmg2) gene, which encodes a membrane protein thought to be involved in the homeostasis of the extracellular matrix. Little is known about the structure and function of the protein or the genotype-phenotype relationship of the disease. Through the analysis of four patients, we identify three novel mutants and determine their effects at the cellular level. Altogether, we show that missense mutations that map to the extracellular von Willebrand domain or the here characterized Ig-like domain of CMG2 lead to folding defects and thereby to retention of the mutated protein in the endoplasmic reticulum (ER). Mutations in the Ig-like domain prevent proper disulphide bond formation and are more efficiently targeted to ER-associated degradation. Finally, we show that mutant CMG2 can be rescued in fibroblasts of some patients by treatment with proteasome inhibitors and that CMG2 is then properly transported to the plasma membrane and signalling competent, identifying the ER folding and degradation pathway components as promising drug targets for HFS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method for oxidative folding of synthetic polypeptides assembled by stepwise solid phase synthesis is introduced. Folding is obtained in excellent yields by reacting S-tert-butylthiolated polypeptides with a 100-fold molar excess of cysteine at 37 degrees C in a slightly alkaline buffer containing chaotropic salts, and in the presence of air-oxygen. This novel protocol has been applied to the folding of S-tert-butylthiolated human thymus and activation-regulated chemokine (hu-TARC) derivatives as well as to larger segments of Plasmodium falciparum and Plasmodium berghei circumsporozoite proteins. Folded P. falciparum polypeptides have been used as substrates of endoproteinase Glu-C (Glu-C) and endoproteinase Asp-N (Asp-N) in an attempt to identify their disulfide connectivities. Particular practical advantages of the present method are (i) easy purification and storage of the S-protected peptide derivatives, (ii) elimination of the risk of cysteine alkylation during the acidolytic cleavage deprotection and resin cleavage steps, (iii) possibility to precisely evaluate the extent of folding and disulfide bond formation by mass spectrometry, and (iv) facile recovery of the final folded product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein-3 (RAMP3) can assemble into a CRLR/RAMP3 heterodimeric receptor that exhibits the characteristics of a high affinity adrenomedullin receptor. RAMP3 participates in adrenomedullin (AM) binding via its extracellular N-terminus characterized by the presence of six highly conserved cysteine residues and four N-glycosylation consensus sites. Here, we assessed the usage of these conserved residues in cotranslational modifications of RAMP3 and addressed their role in functional expression of the CRLR/RAMP3 receptor. Using a Xenopus oocyte expression system, we show that (i) RAMP3 is assembled with CRLR as a multiple N-glycosylated species in which two, three, or four consensus sites are used; (ii) elimination of all N-glycans in RAMP3 results in a significant inhibition of receptor [(125)I]AM binding and an increase in the EC(50) value for AM; (iii) several lines of indirect evidence indicate that each of the six cysteines is involved in disulfide bond formation; (iv) when all cysteines are mutated to serines, RAMP3 is N-glycosylated at all four consensus sites, suggesting that disulfide bond formation inhibits N-gylcosylation; and (v) elimination of all cysteines abolishes adrenomedullin binding and leads to a complete loss of receptor function. Our data demonstrate that cotranslational modifications of RAMP3 play a critical role in the function of the CRLR/RAMP3 adrenomedullin receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present experiment describes the preparation, characterization of n-butyl(pyridil)cobaloxime complex and its electrochemical property. The infrared and uv-visible absorption spectra were used to characterize the complex obtained. The infrared spectrum of the compound showed characteristics bands that indicated the formation of the Co-C chemical bond formation. The electronic absorption spectrum in acetonitrile showed transition bands attributed to p-p*, metal-to-ligand charge transfer, d-d transitions and charge transfer Co-C. The electrochemical property was investigated by the pulse differential voltammetry technique. Two oxidation processes: Co(I)/Co(II) at -423 mV and Co(II)/Co(III) at 752 mV were observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents three operationally simple laboratory protocols for monocrystal growth of small-molecule organic compounds, which have been applied with success in the last ten years for the formation of single crystals for X-ray structural studies. In addition, five structure hints were formulated as general guidelines for selecting a small-molecule organic compound as a candidate for monocrystal growth: molecular weight >200 D, melting point >100 ºC, two or more aromatic rings in the structure, at least two sites for intermolecular hydrogen bond formation, and a halogen or other heavy atom in the structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-cost tungsten monometallic catalysts containing variable amounts of metal (4.5, 7.1 and 8.5%W) were prepared by impregnating alumina with ammonium metatungstate as an inexpensive precursor. The catalysts were characterized using ICP, XPS, XRD, TPR and hydrogen chemisorption. These techniques revealed mainly WO3-Al2O3 (W6+) species on the surface. The effects of the content of W nanoparticles and reaction temperature on activity and selectivity for the partial hydrogenation of 3-hexyne, a non-terminal alkyne, were assessed under moderate conditions of temperature and pressure. The monometallic catalysts prepared were found to be active and stereoselective for the production of (Z )-3-hexene, had the following order: 7.1WN/A > 8.5 WN/A ≥ 4.5 WN/A. Additionally, the performance of the synthesized xWN/A catalysts exhibited high sensitivity to temperature variation. In all cases, the maximum 3-hexyne total conversion and selectivity was achieved at 323 K. The performance of the catalysts was considered to be a consequence of two phenomena: a) the electronic effects, related to the high charge of W (+6), causing an intensive dipole moment in the hydrogen molecule (van der Waals forces) and leading to heterolytic bond rupture; the H+ and H- species generated approach a 3-hexyne adsorbate molecule and cause heterolytic rupture of the C≡C bond into C- = C+; and b) steric effects related to the high concentration of WO3 on 8.5WN/A that block the Al2O3 support. Catalyst deactivation was detected, starting at about 50 min of reaction time. Electrodeficient W6+ species are responsible for the formation of green oil at the surface level, blocking pores and active sites of the catalyst, particularly at low reaction temperatures (293 and 303 K). The resulting best catalyst, 7.1WN/A, has low fabrication cost and high selectivity for (Z )-3-hexene (94%) at 323 K. This selectivity is comparable to that of the classical and more expensive industrial Lindlar catalyst (5 wt% Pd). The alumina supported tungsten catalysts are low-cost potential replacements for the Lindlar industrial catalyst. These catalysts could also be used for preparing bimetallic W-Pd catalysts for selective hydrogenation of terminal and non-terminal alkynes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serine-proteases are involved in vital processes in virtually all species. They are important targets for researchers studying the relationships between protein structure and activity, for the rational design of new pharmaceuticals. Trypsin was used as a model to assess a possible differential contribution of hydration water to the binding of two synthetic inhibitors. Thermodynamic parameters for the association of bovine ß-trypsin (homogeneous material, observed 23,294.4 ± 0.2 Da, theoretical 23,292.5 Da) with the inhibitors benzamidine and berenil at pH 8.0, 25ºC and with 25 mM CaCl2, were determined using isothermal titration calorimetry and the osmotic stress method. The association constant for berenil was about 12 times higher compared to the one for benzamidine (binding constants are K = 596,599 ± 25,057 and 49,513 ± 2,732 M-1, respectively; the number of binding sites is the same for both ligands, N = 0.99 ± 0.05). Apparently the driving force responsible for this large difference of affinity is not due to hydrophobic interactions because the variation in heat capacity (DCp), a characteristic signature of these interactions, was similar in both systems tested (-464.7 ± 23.9 and -477.1 ± 86.8 J K-1 mol-1 for berenil and benzamidine, respectively). The results also indicated that the enzyme has a net gain of about 21 water molecules regardless of the inhibitor tested. It was shown that the difference in affinity could be due to a larger number of interactions between berenil and the enzyme based on computational modeling. The data support the view that pharmaceuticals derived from benzamidine that enable hydrogen bond formation outside the catalytic binding pocket of ß-trypsin may result in more effective inhibitors.