922 resultados para Bypasses route
Resumo:
We report the synthesis of Cd-substituted ZnO nanostructures (Zn1-xCdxO with x up to approximate to 0.09) by the high-pressure solution growth method. The synthesized nanostructures comprise nanocrystals that are both particles (similar to 10-15 nm) and rods which grow along the [002] direction as established by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. Rietveld analysis of the XRD data shows a monotonic increase of the unit cell volume with the increase of Cd concentration. The optical absorption, as well as the photoluminescence (PL), shows a red shift on Cd substitution. The line width of the PL spectrum is related to the strain inhomogeneity and it peaks in the region where the CdO phase separates from the Zn1-xCdxO nanostructures. The time-resolved photoemission showed a long-lived (similar to 10 ns) component. We propose that the PL behaviour of the Zn1-xCdxO is dominated by strain in the sample with the red shift of the PL linked to the expansion of the unit cell volume on Cd substitution.
Resumo:
Nanoplate LiFePO4 is synthesized by a polyol route starting from only two reactants, namely, FePO4 and LiOH. The crystalline compound forms by refluxing a tetraethylene glycol solution consisting of FePO4 and LiOH at 335 degrees C without further heating of the reaction product.The nanoplates have average dimensions of 30 nm width and 160 nm length, as measured from transmission electron microscopy micrographs.The surface area of the LiFePO4 sample is 38 m(2) g(-1). Also, the sample is porous with a broadly distributed pore around 50 nm. The electrodes fabricated out of the nanoplate of LiFePO4 exhibit a high electrochemical activity. Discharge capacity values measured are 160 and 100 mAh g(-1) at 0.15C and 3.45C, respectively. A stable capacity of about 155 mAh g(-1) is measured at 0.2C over a 50 charge-discharge cycle. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3425730] All rights reserved.
Resumo:
We report here a synthetic route for high-quality Mn-doped ZnSe nanocrystals using selenourea as a selenium source, avoiding the more conventional route-using tributylphosphine (TBP) that restricts the growth of spherical ZnSe nanocrystals below 5 nm in size, besides being highly toxic and pyrophoric. Spherical ZnSe nanocrystals with unprecendented sizes (up to 12 nm) are synthesized, the large size of the host helps to keep dopant ions well inside the nanocrystal leading to intense and stable dopant emission. Mn-doped ZnSe nanocrystals with more than 50% quantum yield (QY) are synthesized in this method and found to be stable both in aqueous and nonaqueous dispersions for months.
Resumo:
Layered LiNi1/3Co1/3Mn1/3O2, which is isostructural with LiCoO2, is considered as a potential cathode material for Li-ion batteries. Submicrometer sized porous particles are useful for high discharge rates. The present work involves a synthesis of submicrometer sized porous particles of LiNi1/3Co1/3Mn1/3O2 using a triblock copolymer as a soft template. The precursor obtained from the reaction is heated at different temperatures between 600 and 900 degrees C for 6 h to get the final product samples. The compound attains increased crystallinity with an increase in the temperature of preparation. However, there is a decrease in the surface area and also in the porosity of the sample. Nevertheless, the LiNi1/3Co1/3Mn1/3O2 sample prepared at 900 degrees C exhibits a high rate capability and stable capacity retention on cycling. The electrochemical performance of LiNi1/3Co1/3Mn1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3364944] All rights reserved.
Resumo:
A new strategy for the construction of the isotwistane skeleton is reported from easily available cyclohexadienes, which involves a one-pot cationic skeletal rearrangement and ene cyclisation of a bicyclo[2.2.2]octenone derivative and a cationic rearrangement of a tricyclo[5.3.0.0(4,8)]decane to a [4.3.1.0(3,7)]decane skeleton as the key steps in the synthesis of 2-pupukeanone.
Resumo:
Ammonium and alkali metal tetrafluoroborates have been prepared by the cation exchange reaction of pyridinium tetrafluoroborate with the corresponding hydroxides/halides. The reaction of pyridinium tetrafluoroborate with primary, secondary and tertiary alkyl amines at room temperature gives rise to mono-, di- and tri-alkylammonium tetrafluoroborates, respectively. The yields are good and the samples are of high purity. The products have been characterised by elemental analysis, IR and PMR spectroscopy. The spectral data for most of the compounds are reported for the first time.
Resumo:
Silver salts of hexafluorophosphates, tetrafluoro-borates and hexafluorosilicates have been prepared by a metathetic reaction between the respective ammonium salts and silver nitrate in acetonitrile medium. This one step procedure at room temperature offers salts of high purity in good yields. The salts (AgpF6, AgBF4 and Ag2SiF6) have been characterised by IR spectral data analysis and chemical analysis.
Resumo:
A microscopic theoretical calculation of time-dependent solvation energy shows that the solvation of an ion or a dipole is dominated by a single relaxation time if the translational contribution to relaxation is significant.
Resumo:
We report the study of complex and unexpected dependencies of nanocrystal size as well as nanocrystalsize distribution on various reaction parameters in the synthesis of ZnO nanocrystals using poly(vinyl pyrollidone) (PVP) as a capping agent. This method establishes a qualitatively different growth mechanism to the anticipated Ostwald ripening behavior. The study of size-distribution kinetics and an understanding of the observed non-monotonic behaviors provides a route to rational synthesis. We used a simple, but accurate, approach to estimate the size-distribution function of nanocrystals from the UV-absorption spectrum. Our results demonstrate the accuracy and generality of this approach, and we also illustrate its application to various semiconducting nanocrystals, such as ZnO, ZnS, and CdSe, over a wide size range (1.8-5.3 nm).
Resumo:
Contrary to that of phenyl derivative 1 the radical 4 adds to radicophiles in an inter- followed by intra-molecular radical Michael addition (radical annulation), furnishing a novel route to chiral isotwistanes 5.
Resumo:
The synthesis of 6-acetyl-2,2-dimethyl-8-methoxychromene (lc), a naturally occurring isomer of encecalin (la)h~s been described startilag from 2,2,6- trimethyl-8-methoxyclaromene (2e) which was obtained from creosol (4) in two steps involving condensation of the phenol with malic acid to the coumarin (3), followed by Grignard reaction with CHaMgI. The transformation of (2e) to the natural product (lc) was effeeted by oxidative dehydrogenation by DDQ of the 6-meth~r function to the formyl group (2f), Grignard reaction to the carbinol (2g) and finally its oxidation to the acetyl moiety (lc), the sequence of the essential steps schematically summarised as : Ar-CHs --* Ar-CHO --* Ar-CH (OH) CHs --* Ar---COCHs.
Resumo:
The aryloxy(alkoxy)cyclotriphosphazenes N3P3(OR)6�m(OC6H4Me-p)n(R = Me, n= 1�3; R = Et or CH2Ph, n= 3) rearrange on heating to give trioxocyclotriphosphazanes; the di- and mono-methoxy derivatives, N3P3(OMe)6�n(OC6H4Me-p)n(n= 4 or 5), yield dioxophosphaz-1-enes and an oxophosphazadiene respectively. The 1H, 13C and 31P NMR data for the starting materials and the products are presented. No evidence has been found for partially rearranged products. The geometrical disposition of the aryloxy groups in the starting material is retained in the rearranged products. Some aspects of the mechanism of the thermal rearrangement are discussed.