987 resultados para Burt tables
Resumo:
Part of the Pond Inlet lounge area.
Resumo:
Cover title: Tunis's guide to Niagara and traveller's companion, illustrated.
Resumo:
Qualitative spatial reasoning (QSR) is an important field of AI that deals with qualitative aspects of spatial entities. Regions and their relationships are described in qualitative terms instead of numerical values. This approach models human based reasoning about such entities closer than other approaches. Any relationships between regions that we encounter in our daily life situations are normally formulated in natural language. For example, one can outline one's room plan to an expert by indicating which rooms should be connected to each other. Mereotopology as an area of QSR combines mereology, topology and algebraic methods. As mereotopology plays an important role in region based theories of space, our focus is on one of the most widely referenced formalisms for QSR, the region connection calculus (RCC). RCC is a first order theory based on a primitive connectedness relation, which is a binary symmetric relation satisfying some additional properties. By using this relation we can define a set of basic binary relations which have the property of being jointly exhaustive and pairwise disjoint (JEPD), which means that between any two spatial entities exactly one of the basic relations hold. Basic reasoning can now be done by using the composition operation on relations whose results are stored in a composition table. Relation algebras (RAs) have become a main entity for spatial reasoning in the area of QSR. These algebras are based on equational reasoning which can be used to derive further relations between regions in a certain situation. Any of those algebras describe the relation between regions up to a certain degree of detail. In this thesis we will use the method of splitting atoms in a RA in order to reproduce known algebras such as RCC15 and RCC25 systematically and to generate new algebras, and hence a more detailed description of regions, beyond RCC25.
Resumo:
UANL
Resumo:
La concertation est un phénomène récent, de plus en plus répandu. Elle s’applique à de nombreux domaines notamment en urbanisme et plus récemment à la protection du patrimoine. Elle semble être un outil approprié pour les autorités municipales afin de faire face aux conflits autour des projets d’aménagement particulièrement ceux liés à la protection du patrimoine. Notre questionnement porte sur l’apport de la concertation dans le domaine de la préservation du patrimoine et sur la pertinence des moyens mis en place pour atteindre un tel objectif. Les tables de concertation, en tant que processus de concertation, sont-elles appropriées pour la gestion des sites patrimoniaux ? À la lumière d’une discussion théorique sur le concept de la concertation en aménagement, nous faisons l’analyse comparative de deux Tables de concertation, celle du Vieux-Montréal et celle du Mont-Royal. Notre analyse porte sur l’évaluation du processus de concertation et sur la construction d’une vision globale pour le devenir des secteurs patrimoniaux concernés. L’objectif est de caractériser le processus de concertation utilisé à Montréal et d’en apprécier l’apport dans le domaine de la protection du patrimoine. L’analyse de nos deux cas d’étude révèle l’existence d’un processus de concertation propre à Montréal, avec ses caractéristiques spécifiques, mais qui reste à parfaire pour son optimisation. Notre recherche se conclut sur la nécessité d’améliorer le processus de concertation, tel qu’étudié, à travers un certain nombre de pistes à explorer.
Utilisation de splines monotones afin de condenser des tables de mortalité dans un contexte bayésien
Resumo:
Dans ce mémoire, nous cherchons à modéliser des tables à deux entrées monotones en lignes et/ou en colonnes, pour une éventuelle application sur les tables de mortalité. Nous adoptons une approche bayésienne non paramétrique et représentons la forme fonctionnelle des données par splines bidimensionnelles. L’objectif consiste à condenser une table de mortalité, c’est-à-dire de réduire l’espace d’entreposage de la table en minimisant la perte d’information. De même, nous désirons étudier le temps nécessaire pour reconstituer la table. L’approximation doit conserver les mêmes propriétés que la table de référence, en particulier la monotonie des données. Nous travaillons avec une base de fonctions splines monotones afin d’imposer plus facilement la monotonie au modèle. En effet, la structure flexible des splines et leurs dérivées faciles à manipuler favorisent l’imposition de contraintes sur le modèle désiré. Après un rappel sur la modélisation unidimensionnelle de fonctions monotones, nous généralisons l’approche au cas bidimensionnel. Nous décrivons l’intégration des contraintes de monotonie dans le modèle a priori sous l’approche hiérarchique bayésienne. Ensuite, nous indiquons comment obtenir un estimateur a posteriori à l’aide des méthodes de Monte Carlo par chaînes de Markov. Finalement, nous étudions le comportement de notre estimateur en modélisant une table de la loi normale ainsi qu’une table t de distribution de Student. L’estimation de nos données d’intérêt, soit la table de mortalité, s’ensuit afin d’évaluer l’amélioration de leur accessibilité.