979 resultados para Bulk heterojuncion
Resumo:
Gold in the quartz-pebble conglomerates of the late Archean Witwatersrand Basin, South Africa, is often intimately associated with carbonaceous matter of organic/biogenic origin which occurs in the form of stratiform carbon seams and paragenetically late bitumen nodules. Both carbon forms are believed to be formed by solidification of migrating hydrocarbons. This paper presents bulk and molecular chemical and stable carbon isotope data for the carbonaceous matter, all of which are used to provide a clue to the source of the hydrocarbons. These data are compared with those from intra-basinal shales and overlying dolostone of the Transvaal Supergroup. The delta C-13 values of the extracts from the Witwatersrand carbonaceous material show small differences (up to 2.4 parts per thousand) compared to the associated insoluble organic matter. This suggests that the auriferous rocks were stained by mobile hydrocarbons produced by thermal and oxidative alteration of indigenous bitumens, a contribution from hydrocarbons derived from intra-basinal Witwatersrand shales cannot be excluded. Individual aliphatic hydrocarbons of the various carbonaceous materials were subjected to compound specific isotope analysis using on-line gas chromatography/combustion/stable isotope ratio mass spectrometry (GC/C/IRMS). The limited variability of the molecular parameters and uniform delta C-13 values of individual n-alkanes (-31.1 +/- 1.7 parts per thousand) and isoprenoids (-30.7 +/- 1.1 parts per thousand) in the Witwatersrand samples exclude the mixing of oils from different sources. Carbonaceous matter in the dolostones shows distinctly different bulk and molecular isotope characteristics and thus cannot have been the source of the hydrocarbons in the Witwatersrand deposits. All the various forms of Witwatersrand carbon appear indigenous to the Witwatersrand Basin, and the differences between them are explained by variable, in general probably short (centimeter- to meter-scale) hydrocarbon migration during diagenesis and subsequent hydrothermal infiltration. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The sol-gel synthesis of bulk silica-based luminescent materials using innocuous hexaethoxydisilane and hexamethoxydisilane monomers, followed by one hour thermal annealing in an inert atmosphere at 950oC-1150oC, is reported. As-synthesized hexamethoxydisilane-derived samples exhibit an intense blue photoluminescence band, whereas thermally treated ones emit stronger photoluminescence radiation peaking below 600 nm. For hexaethoxydisilane-based material, annealed at or above 1000oC, a less intense photoluminescence band, peaking between 780 nm and 850 nm that is attributed to nanocrystalline silicon is observed. Mixtures of both precursors lead to composed spectra, thus envisaging the possibility of obtaining pre-designed spectral behaviors by varying the mixture composition.
Resumo:
The neutron skin thickness of nuclei is a sensitive probe of the nuclear symmetry energy and has multiple implications for nuclear and astrophysical studies. However, precision measurements of this observable are difficult to obtain. The analysis of the experimental data may imply some assumptions about the bulk or surface nature of the formation of the neutron skin. Here we study the bulk or surface character of neutron skins of nuclei following from calculations with Gogny, Skyrme, and covariant nuclear mean-field interactions. These interactions are successful in describing nuclear charge radii and binding energies but predict different values for neutron skins. We perform the study by fitting two-parameter Fermi distributions to the calculated self-consistent neutron and proton densities. We note that the equivalent sharp radius is a more suitable reference quantity than the half-density radius parameter of the Fermi distributions to discern between the bulk and surface contributions in neutron skins. We present calculations for nuclei in the stability valley and for the isotopic chains of Sn and Pb.
Resumo:
In this work carrier-facilitated transport of mercury(II) against its concentration gradient from aqueous 0.04 M hydrochloric acid solution across a liquid membrane containing isopropyl 2-[(isopropoxycarbothiolyl)disulfanyl]ethane thioate (IIDE) as the mobile carrier in chloroform has been investigated. Sodium thiocyanate solution (1.6 M) was the most efficient receiving phase agent among several aqueous reagents tested. Various parameters such as investigated. Under optimum conditions the transport of Hg(II) across the liquid membrane is more than 97% after 2.5 h. The carrier, IIDE, selectively and efficiently could able to transport Hg (II) ions in the presence of other associated metal ions in binary systems.
Resumo:
An isocratic reversed phase high-performance liquid chromatographic (RP-HPLC) method has been developed for the simultaneous determination of gemifloxacin and diuretics (hydrochlorothiazide and furosemide) in bulk, dosage formulations and human serum at 232 nm. Chromatographic separation was achieved on Purospher Start C18 (250 mm x 4.6 mm, 5 µm) column using mobile phase, methanol: water: acetonitrile (70:25:5 v/v/v) adjusted to pH 3.0 via phosphoric acid 85% having flow rate of 0.8 mL min -1 at room temperature. Calibration curves were linear over range of 0.5-10 µg mL -1 with a correlation coefficient ± 0.999. LOD and LOQ were in the ranges of 0.75-2.56 µg mL -1. Intra and inter-run precision and accuracy results were 98.26 to 100.9.
Resumo:
Sensitive and selective spectrophotometric and spectrofluorimetric methods have been developed for determination of some drugs such as Pramipexole, Nebivolol, Carvedilol, and Eletriptan, which commonly contain secondary amino group. The subject methods were developed via derivatization of the secondary amino groups with 7-Chloro-4-Nitrobenzofurazon in borate buffer where a yellow colored reaction product was obtained and measured spectrophotometrically or spectrofluorimetrically. Concentration ranges were found as 2.0 to 250 μg mL-1 and 0.1 to 3.0 μg mL-1, for spectrophotometric and spectrofluorimetric study, respectively. The described methods can be easily applied by the quality control laboratories in routine analyses of these drugs in pharmaceutical preparations.
Resumo:
Three simple, sensitive, economical and reproducible spectrophotometric methods (A, B and C) are described for determination of mesalamine in pure drug as well as in tablet dosage forms. Method A is based on the reduction of tungstate and/or molybdate in Folin Ciocalteu's reagent; method B describes the reaction between the diazotized drug and α-naphthol and method C is based on the reaction of the drug with vanillin, in acidic medium. Under optimum conditions, mesalamine could be quantified in the concentration ranges, 1-30, 1-15 and 2-30 µg mL-1 by method A, B and C, respectively. All the methods have been applied to the determination of mesalamine in tablet dosage forms. Results of analysis are validated statistically.
Resumo:
Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.
Resumo:
Two simple, rapid and cost-effective methods based on titrimetric and spectrophotometric techniques are described for the assay of RNH in bulk drug and in dosage forms using silver nitrate, mercury(II)thiocyanate and iron(III)nitrate as reagents. In titrimetry, an aqueous solution of RNH is treated with measured excess of silver nitrate in HNO3 medium, followed by determination of unreacted silver nitrate by Volhard method using iron(III) alum indicator. Spectrophotometric method involve the addition a known excess of mercury(II)thiocyanate and iron(III)nitrate to RNH, followed by the measurement of the absorbance of iron(III)thiocyante complex at 470 nm. Titrimetric method is applicable over 4-30 mg range and the reaction stoichiometry is found to be 1:1 (RNH: AgNO3). In the spectrophotometric method, the absorbance is found to increase linearly with concentration of RNH which is corroborated by the correlation coefficient of 0.9959. The system obey Beer's law for 5-70 µg mL-1. The calculated apparent molar absorptivity and sandell sensitivity values are found to be 3.27 ´ 10³ L mol-1 cm-1, 0.107 µg cm-2 respectively. The limits of detection and quantification are also reported for the spectrophotometric method. Intra-day and inter-day precision and accuracy of the methods were evaluated as per ICH guidelines. The methods were successfully applied to the assay of RNH in formulations and the results were compared with those of a reference method by applying Student's t and F-tests. No interference was observed from common pharmaceutical excipients. The accuracy of the methods was further ascertained by performing recovery tests by standard addition method.
Resumo:
A direct, extraction-free spectrophotometric method has been developed for the determination of acebutolol hydrochloride (ABH) in pharmaceutical preparations. The method is based on ion-pair complex formation between the drug and two acidic dyes (sulphonaphthalein) namely bromocresol green (BCG) and bromothymol blue (BTB). Conformity to Beer's law enabled the assay of the drug in the range of 0.5-13.8 µg mL-1 with BCG and 1.8-15.9 µg mL-1 with BTB. Compared with a reference method, the results obtained were of equal accuracy and precision. In addition, these methods were also found to be specific for the analysis of acebutolol hydrochloride in the presence of excipients, which are co-formulated in the drug.
Resumo:
Two new, simple, rapid and reproducible spectrophotometric methods have been developed for the determination of lamotrigine (LMT) both in pure form and in its tablets. The first method (method A) is based on the formation of a colored ion-pair complex (1:1 drug/dye) of LMT with bromocresol green (BCG) at pH 5.02±0.01 and extraction of the complex into dichloromethane followed by the measurement of the yellow ion-pair complex at 410 nm. In the second (method B), the drug-dye ion-pair complex was dissolved in ethanolic potassium hydroxide and the resulting base form of the dye was measured at 620 nm. Beer's law was obeyed in the concentration range of 1.5-15 µg mL-1 and 0.5-5.0 µg mL-1 for method A and method B, respectively, and the corresponding molar absorptivity values are 1.6932 x 10(4) and 3.748 x 10(4) L mol-1cm-1. The Sandell sensitivity values are 0.0151 and 0.0068 µg cm-2 for method A and method B, respectively. The stoichiometry of the ion-pair complex formed between the dug and dye (1:1) was determined by Job's continuous variations method and the stability constant of the complex was also calculated. The proposed methods were applied successfully for the determination of drug in commercial tablets.
Resumo:
Magnetic nanoparticles are very important in modern industry. These particles are used in many different spheres of life. Nanoparticles have unusual physical and chemical properties connected both with quantum dimensional effects and with the increased role of the surface atoms. Most clearly the difference between the properties of bulk materials and nanoparticles can be seen in the magnetic properties of these materials. The most typical magnetic properties of nanomaterials are superparamagnetism with the size of the cluster from 1 to 10 nm; single-domain magnetic state of nanoclusters and nanostructures up to 20 nm; magnetization processes connected with magnetic cluster ordering and with its forms and sizes; quantum magnetic tunneling effects when magnetization changes by jumps and giant magnetoresistance effects. For research of the magnetic properties of iron-containing nanostructures, it is convenient to apply Mӧssbauer spectroscopy. In this work a number of nano-sized samples of iron oxides were examined by Mössbauer spectroscopy. The Mössbauer spectra of nanoparticles with various sizes were obtained. Mössbauer spectra of iron oxide nanoparticles were compared with the spectra of bulk samples. It was shown how the spectra of iron oxide nanoparticles change depending on the particle sizes.
Resumo:
This study is made as a part of the Chembaltic (Risks of Maritime Transportation of Chemicals in Baltic Sea) project which gathers information on the chemicals transported in the Baltic Sea. The purpose of this study is to provide an overview of handling volumes of liquid bulk chemicals (including liquefied gases) in the Baltic Sea ports and to find out what the most transported liquid bulk chemicals in the Baltic Sea are. Oil and oil products are also viewed in this study but only in a general level. Oils and oil products may also include chemical-related substances (e.g. certain bio-fuels which belong to MARPOL annex II category) in some cargo statistics. Chemicals in packaged form are excluded from the study. Most of the facts about the transport volumes of chemicals presented in this study are based on secondary written sources of Scandinavian, Russian, Baltic and international origin. Furthermore, statistical sources, academic journals, periodicals, newspapers and in later years also different homepages on the Internet have been used as sources of information. Chemical handling volumes in Finnish ports were examined in more detail by using a nationwide vessel traffic system called PortNet. Many previous studies have shown that the Baltic Sea ports are annually handling more than 11 million tonnes of liquid chemicals transported in bulk. Based on this study, it appears that the number may be even higher. The liquid bulk chemicals account for approximately 4 % of the total amount of liquid bulk cargoes handled in the Baltic Sea ports. Most of the liquid bulk chemicals are handled in Finnish and Swedish ports and their proportion of all liquid chemicals handled in the Baltic Sea is altogether over 50 %. The most handled chemicals in the Baltic Sea ports are methanol, sodium hydroxide solution, ammonia, sulphuric and phosphoric acid, pentanes, aromatic free solvents, xylenes, methyl tert-butyl ether (MTBE) and ethanol and ethanol solutions. All of these chemicals are handled at least hundred thousand tonnes or some of them even over 1 million tonnes per year, but since chemical-specific data from all the Baltic Sea countries is not available, the exact tonnages could not be calculated in this study. In addition to these above-mentioned chemicals, there are also other high volume chemicals handled in the Baltic Sea ports (e.g. ethylene, propane and butane) but exact tonnes are missing. Furthermore, high amounts of liquid fertilisers, such as solution of urea and ammonium nitrate in water, are transported in the Baltic Sea. The results of the study can be considered indicative. Updated information about transported chemicals in the Baltic Sea is the first step in the risk assessment of the chemicals. The chemical-specific transportation data help to target hazard or e.g. grounding/collision risk evaluations to chemicals that are handled most or have significant environmental hazard potential. Data gathered in this study will be used as background information in later stages of the Chembaltic project when the risks of the chemicals transported in the Baltic Sea are assessed to highlight the chemicals that require special attention from an environmental point of view in potential marine accident situations in the Baltic Sea area.