983 resultados para Building Design


Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the early design stages of construction projects, accurate and timely cost feedback is critical to design decision making. This is particularly challenging for cost estimators, as they must quickly and accurately estimate the cost of the building when the design is still incomplete and evolving. State-of-the-art software tools typically use a rule-based approach to generate detailed quantities from the design details present in a building model and relate them to the cost items in a cost estimating database. In this paper, we propose a generic approach for creating and maintaining a cost estimate using flexible mappings between a building model and a cost estimate. The approach uses queries on the building design that are used to populate views, and each view is then associated with one or more cost items. The benefit of this approach is that the flexibility of modern query languages allows the estimator to encode a broad variety of relationships between the design and estimate. It also avoids the use of a common standard to which both designers and estimators must conform, allowing the estimator added flexibility and functionality to their work.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The world of Construction is changing, so too are the expectations of stakeholders regarding strategies for adapting existing resources (people, equipment and finances), processes and tools to the evolving needs of the industry. Building Information Modelling (BIM) is a data-rich, digital approach for representing building information required for design and construction. BIM tools play a crucial role and are instrumental to current approaches, by industry stakeholders, aimed at harnessing the power of a single information repository for improved project delivery and maintenance. Yet, building specifications - which document information on material quality, and workmanship requirements - remain distinctly separate from model information typically represented in BIM models. BIM adoption for building design, construction and maintenance is an industry-wide strategy aimed at addressing such concerns about information fragmentation. However, to effectively reduce inefficiencies due to fragmentation, BIM models require crucial building information contained in specifications. This paper profiles some specification tools which have been used in industry as a means of bridging the BIM-Specifications divide. We analyse the distinction between current attempts at integrating BIM and specifications and our approach which utilizes rich specification information embedded within objects in a product library as a method for improving the quality of information contained in BIM objects at various levels of model development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With the increase in complexity of engineering projects and design quality in the construction industry, the traditional two-dimensional "Information Island" approach to design is becoming less able to meet current design needs due to its lack of coordination and information sharing. Collaborative design using a Build Information Modeling (BIM) technology platform promises to provide an effective means of designing and communicating through networking and real-time data sharing. This paper first analyzes the shortcomings of the two-dimensional design process and the potential application of collaborative design. By combining the attributes of BIM, a preliminary BIM-based building design collaborative platform is developed to improve the design approach and support a more collaborative design process. A real-life case is presented to demonstrate the feasibility and validity of the platform and its use in practice. From this, it is shown that BIM has the potential to realize effective information sharing and reduce errors, thereby improving design quality. The BIM-based building design collaborative platform presented is expected to provide the support needed for the extensive application of BIM in collaborative design and promote a new attitude to project management.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Successful management of design changes is critical for the efficient delivery of construction projects. Building Information Modeling (BIM) is envisioned to play an important role in integrating design, construction and facility management processes through coordinated changes throughout the project life-cycle. BIM currently provides significant benefits in coordinating changes across different views in a single model, and identifying conflicts between different discipline-specific models. However, current BIM tools provide limited support in managing changes across several discipline-specific models. This paper describes an approach to represent, coordinate, and track changes within a collaborative multi-disciplinary BIM environment. This approach was informed by a detailed case study of a large, complex, fast-tracked BIM project where we investigated numerous design changes, analyzed change management processes, and evaluated existing BIM tools. Our approach characterises design changes in an ontology to represent changed component attributes, dependencies between components, and change impacts. It explores different types of dependencies amongst different design changes and describes how a graph based approach and dependency matrix could assist with automating the propagation and impact of changes in a BIM-based project delivery process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Influential creative industries and creative place thinkers Richard Florida and Charles Landry agree that creativity is necessary for a prospering liveable and, therefore, sustainable city. Following Florida’s work, the ‘creative class’ has become central to what has turned out to be city-centre-centric growth policies. However, until the Queensland University of Technology’s Australian Research Council sponsored research into “creative suburbia”, few researchers had demonstrated – let alone challenged – the notion that a substantial cohort of creative industries workers might prefer to live and work at home in the suburbs rather than in city centres. The “creative suburb” work builds on the creative suburbia research. In a practice-led and property development industry embedded inquiry, the creative suburb draws on significant primary research with suburban, home-based, creative industries workers, vernacular architecture, and town planning in the Toowoomba region, in the state of Queensland, Australia, as inspiration for a series of new building and urban designs available for innovators operating in new suburban greenfield situations and suburban areas undergoing a refit in Queensland and possibly further afield. This paper focuses on one building design informed by this inquiry, with the intention of its construction as a ’showcasestudy’ ‘homeworkhouse’, suitable for creative industries workers in the Toowoomba region.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper investigates 'future-proofing' as an unexplored yet all-important aspect in the design of low-energy dwellings. It refers particularly to adopting lifecycle thinking and accommodating risks and uncertainties in the selection of fabric energy efficiency measures and low or zero-carbon technologies. Based on a conceptual framework for future-proofed design, the paper first presents results from the analysis of two 'best practice' housing developments in England; i.e., North West Cambridge in Cambridge and West Carclaze and Baal in St. Austell, Cornwall. Second, it examines the 'Energy and CO2 Emissions' part of the Code for Sustainable Homes to reveal which design criteria and assessment methods can be practically integrated into this established building certification scheme so that it can become more dynamic and future-oriented.Practical application: Future-proofed construction is promoted implicitly within the increasingly stringent building regulations; however, there is no comprehensive method to readily incorporate futures thinking into the energy design of buildings. This study has a three-fold objective of relevance to the building industry:Illuminating the two key categories of long-term impacts in buildings, which are often erroneously treated interchangeably:- The environmental impact of buildings due to their long lifecycles.- The environment's impacts on buildings due to risks and uncertainties affecting the energy consumption by at least 2050. This refers to social, technological, economic, environmental and regulatory (predictable or unknown) trends and drivers of change, such as climate uncertainty, home-working, technology readiness etc.Encouraging future-proofing from an early planning stage to reduce the likelihood of a prematurely obsolete building design.Enhancing established building energy assessment methods (certification, modelling or audit tools) by integrating a set of future-oriented criteria into their methodologies. © 2012 The Chartered Institution of Building Services Engineers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Comfort is, in essence, satisfaction with the environment, and with respect to the indoor environment it is primarily satisfaction with the thermal conditions and air quality. Improving comfort has social, health and economic benefits, and is more financially significant than any other building cost. Despite this, comfort is not strictly managed throughout the building lifecycle. This is mainly due to the lack of an appropriate system to adequately manage comfort knowledge through the construction process into operation. Previous proposals to improve knowledge management have not been successfully adopted by the construction industry. To address this, the BabySteps approach was devised. BabySteps is an approach, proposed by this research, which states that for an innovation to be adopted into the industry it must be implementable through a number of small changes. This research proposes that improving the management of comfort knowledge will improve comfort. ComMet is a new methodology proposed by this research that manages comfort knowledge. It enables comfort knowledge to be captured, stored and accessed throughout the building life-cycle and so allowing it to be re-used in future stages of the building project and in future projects. It does this using the following: Comfort Performances – These are simplified numerical representations of the comfort of the indoor environment. Comfort Performances quantify the comfort at each stage of the building life-cycle using standard comfort metrics. Comfort Ratings - These are a means of classifying the comfort conditions of the indoor environment according to an appropriate standard. Comfort Ratings are generated by comparing different Comfort Performances. Comfort Ratings provide additional information relating to the comfort conditions of the indoor environment, which is not readily determined from the individual Comfort Performances. Comfort History – This is a continuous descriptive record of the comfort throughout the project, with a focus on documenting the items and activities, proposed and implemented, which could potentially affect comfort. Each aspect of the Comfort History is linked to the relevant comfort entity it references. These three components create a comprehensive record of the comfort throughout the building lifecycle. They are then stored and made available in a common format in a central location which allows them to be re-used ad infinitum. The LCMS System was developed to implement the ComMet methodology. It uses current and emerging technologies to capture, store and allow easy access to comfort knowledge as specified by ComMet. LCMS is an IT system that is a combination of the following six components: Building Standards; Modelling & Simulation; Physical Measurement through the specially developed Egg-Whisk (Wireless Sensor) Network; Data Manipulation; Information Recording; Knowledge Storage and Access.Results from a test case application of the LCMS system - an existing office room at a research facility - highlighted that while some aspects of comfort were being maintained, the building’s environment was not in compliance with the acceptable levels as stipulated by the relevant building standards. The implementation of ComMet, through LCMS, demonstrates how comfort, typically only considered during early design, can be measured and managed appropriately through systematic application of the methodology as means of ensuring a healthy internal environment in the building.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study highlights how heuristic evaluation as a usability evaluation method can feed into current building design practice to conform to universal design principles. It provides a definition of universal usability that is applicable to an architectural design context. It takes the seven universal design principles as a set of heuristics and applies an iterative sequence of heuristic evaluation in a shopping mall, aiming to achieve a cost-effective evaluation process. The evaluation was composed of three consecutive sessions. First, five evaluators from different professions were interviewed regarding the construction drawings in terms of universal design principles. Then, each evaluator was asked to perform the predefined task scenarios. In subsequent interviews, the evaluators were asked to re-analyze the construction drawings. The results showed that heuristic evaluation could successfully integrate universal usability into current building design practice in two ways: (i) it promoted an iterative evaluation process combined with multi-sessions rather than relying on one evaluator and on one evaluation session to find the maximum number of usability problems, and (ii) it highlighted the necessity of an interdisciplinary ad hoc committee regarding the heuristic abilities of each profession. A multi-session and interdisciplinary heuristic evaluation method can save both the project budget and the required time, while ensuring a reduced error rate for the universal usage of the built environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article presents a UK-based research that has studied the existing sheltered or assisted living housing population and its future housing options and preferences. This meets an identified need to know and understand users' needs and requirements in much more detail that outlines what is liked and disliked by older people about sheltered housing, so that those who plan and design such housing can be aware of their views. The study also sought to understand the architects' challenges in designing and adapting this type of housing. The sheltered housing managed by housing associations in Belfast, Northern Ireland, was assessed through a series of site visits, structured interviews, and a focus group with stakeholders. Findings revealed older users' keen interest in participating in their housing needs assessment, identified building design concerns and provided recommendations for potential design guidelines. The findings of this research have provided important policy and design guidance to NI housing providers, and also allowed various stakeholders to participate in the debate about the quality of housing provided for the older people. This is a significant research study that generated considerable interest from various housing providers. This is an international peer reviewed journal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is concerned with assessing the building’s the energy efficiency and qualities of a modular design for the education industry, in order assess the long economic benefits. The research includes a life-cycle energy and cost analysis of the school building design, predicting the impact on the operational cost of the building as a result of the addition of photovoltaic panels. The paper also includes a comparative study between the ECO Modular Solutions building, and a current standard prefabricated school building, quantifying the savings in CO2 emissions and savings in cost.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose
– Concern of the deterioration of indoor environmental quality as a result of energy efficient building design strategies is growing. Apprehensions of the effect of airtight, super insulated envelopes, the reduction of infiltration, and the reliance on mechanical systems to provide adequate ventilation (air supply) is promoting emerging new research in this field. The purpose of this paper is to present the results of an indoor air quality (IAQ) and thermal comfort investigation in UK energy efficient homes, through a case study investigation.

Design/methodology/approach
– The case study dwellings consisted of a row of six new-build homes which utilize mechanical ventilation with heat recovery (MVHR) systems, are built to an average airtightness of 2m3/m2/hr at 50 Pascal’s, and constructed without a central heating system. Physical IAQ measurements and occupant interviews were conducted during the summer and winter months over a 24-hour period, to gain information on occupant activities, perception of the interior environment, building-related health and building use.

Findings
– The results suggest inadequate IAQ and perceived thermal comfort, insufficient use of purge ventilation, presence of fungal growth, significant variances in heating patterns, occurrence of sick building syndrome symptoms and issues with the MVHR system.

Practical implications
– The findings will provide relevant data on the applicability of airtight, mechanically ventilated homes in a UK climate, with particular reference to IAQ.

Originality/value
– IAQ data of this nature is essentially lacking, particularly in the UK context. The findings will aid the development of effective sustainable design strategies that are appropriate to localized climatic conditions and sensitive to the health of building occupants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is predicted that climate change will result in rising sea levels, more frequent and extreme weather events, hotter and drier summers and warmer and wetter winters. This will have a significant impact on the design of buildings, how they are kept cool and how they are weathered against more extreme climatic conditions. The residential sector is already a significant environmental burden with high associated operational energy. Climate change, and a growing population requiring residence, has the potential to exacerbate this problem seriously. New paradigms for residential building design are required to enable low-carbon dioxide operation to mitigate climate change. They must also face the reality of inevitable climate change and adopt climate change adaptation strategies to cope with future scenarios. However, any climate adaptation strategy for dwellings must also be cognisant of adapting occupant needs, influenced by ageing populations and new technologies. This paper presents concepts and priorities for changing how society designs residential buildings by designing for adaptation. A case study home is analysed in the context of its stated aims of low energy and adaptability. A post-occupancy evaluation of the house is presented, and future-proofing strategies are evaluated using climate projection data for future climate change scenarios.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.