868 resultados para Bufo marinus Queensland Ecology
Resumo:
Eucalyptus savannas on low nutrient soils are being extensively cleared in Queensland. In this paper we provide background information relevant to understanding nutrient (particularly nitrogen) dynamics in sub/tropical savanna, and review the available evidence relevant to understanding the potential impact of clearing Eucalyptus savanna on nutrient relations. The limited evidence presently available can be used to argue for the extreme positions that: (i) woody vegetation competes with grasses Cor resources. and tree/shrub clearing improves pasture production, (ii) woody vegetation benefits pasture production. At present, the lack of fundamental knowledge about Australian savanna nutrient relations makes accurate predictions about medium- and long-term effects of clearing on nutrient relations in low nutrient savannas difficult. The future of cleared savannas will differ if herbaceous species maintain all functions that woody vegetation has previously held, or if woody species have functions distinct from those of herbaceous vegetation. Research suggests that savanna soils are susceptible to nitrate leaching, and that trees improve the nutrient status of savanna soils in some situations. The nitrogen capital of cleared savanna is at risk if mobile ions are not captured efficiently by the vegetation. and nitrogen input via N-2 fixation from vegetation and microbiotic crusts is reduced. In order to predict clearing effects on savanna nutrient relations, research should be directed to answering (i) how open or closed nutrient cycles are in natural and cleared savanna, (ii) which functions are performed by savanna constituents such as woody and herbaceous vegetation, native and exotic plant species. termites, and microbiotic 7 crusts in relation to nutrient cycles. In the absence of detailed knowledge about savanna functioning, clearing carries the risk of promoting continuous nutrient depiction.
Resumo:
The goal of biodiversity conservation has been described as the conservation of diversity at three levels: ecosystem, species and genetic diversity. Developing a representative system of marine protected areas (MPAs) is considered an effective way to achieve this goal in the marine environment. In the absence of detailed information relating to biological distributions there has been increasing use of biodiversity surrogates to determine MPA priorities at regional levels. The development of biodiversity surrogates at fine scales (i.e. habitats) will have an increasingly important role in the identification of sites that will contribute to a representative system of MPAs. This is because it will increase the likelihood that the system will adequately achieve biodiversity objectives by ensuring protection of a greater range of habitats and species. This article provides an explanation of an intertidal shoreline habitat surrogate used to describe 24,216km of Queensland's coastline. The protective status of intertidal habitats was evaluated to assist with designing a representative system of intertidal MPAs. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Clearing of native vegetation is a major threat to biodiversity in Australia. In Queensland, clearing has resulted in extensive ecosystem transformation, especially in the more fertile parts of the landscape. In this paper, we examine Queensland, Australian and some overseas evidence of the impact of clearing and related fragmentation effects on terrestrial biota. The geographic locus is the semi-arid regions. although we recognise that coastal regions have been extensively cleared. The evidence reviewed here suggests that the reduction of remnant vegetation to 30% will result in the loss of 25-35% of vertebrate fauna, with the full impact not realised for another 50-100 years, or even longer. Less mobile, habitat specialists and rare species appear to be particularly at risk. We propose three broad principles For effective biodiversity conservation in Queensland: (i) regional native vegetation retention thresholds of 50910: (ii) regional ecosystem thresholds of 30%: and (iii) landscape design and planning principles that protect large remnants, preferably > 2000 ha, as core habitats. Under these retention thresholds. no further clearing would be permitted in the extensively cleared biogeographic regions such as Brigalow Belt and New England Tablelands. Some elements of the biota. however, will require more detailed knowledge and targeted retention and management to ensure their security. The application of resource sustainability and economic criteria outlined elsewhere in this volume should be applied to ensure that the biogeographic regions in the north and west of Queensland that are largely intact continue to provide extensive wildlife habitat.
Resumo:
Landscape metrics are widely applied in landscape ecology to quantify landscape structure. However, many are poorly tested and require rigorous validation if they are to serve as reliable indicators of habitat loss and fragmentation, such as Montreal Process Indicator 1.1e. We apply a landscape ecology theory, supported by exploratory and confirmatory statistical techniques, to empirically test landscape metrics for reporting Montreal Process Indicator 1.1e in continuous dry eucalypt forests of sub-tropical Queensland, Australia. Target biota examined included: the Yellow-bellied Glider (Petaurus australis); the diversity of nectar and sap feeding glider species including P. australis, the Sugar Glider P. breviceps, the Squirrel Glider P. norfolcensis, and the Feathertail Glider Acrobates pygmaeus; six diurnal forest birds species; total diurnal bird species diversity; and the density of nectar-feeding diurnal bird species. Two scales of influence were considered: the stand-scale (2 ha), and a series of radial landscape extents (500 m - 2 km; 78 - 1250 ha) surrounding each fauna transect. For all biota, stand-scale structural and compositional attributes were found to be more influential than landscape metrics. For the Yellow-bellied Glider, the proportion of trace habitats with a residual element of old spotted-gum/ironbark eucalypt trees was a significant landscape metric at the 2 km landscape extent. This is a measure of habitat loss rather than habitat fragmentation. For the diversity of nectar and sap feeding glider species, the proportion of trace habitats with a high coefficient of variation in patch size at the 750 m extent was a significant landscape metric. None of the landscape metrics tested was important for diurnal forest birds. We conclude that no single landscape metric adequately captures the response of the region's forest biota per se. This poses a major challenge to regional reporting of Montreal Process Indicator 1.1e, fragmentation of forest types.
Resumo:
Concerns of reduced productivity and land degradation in the Mitchell grasslands of central western Queensland were addressed through a range monitoring program to interpret condition and trend. Botanical and eclaphic parameters were recorded along piosphere and grazing gradients, and across fenceline impact areas, to maximise changes resulting from grazing. The Degradation Gradient Method was used in conjunction with State and Transition Models to develop models of rangeland dynamics and condition. States were found to be ordered along a degradation gradient, indicator species developed according to rainfall trends and transitions determined from field data and available literature. Astrebla spp. abundance declined with declining range condition and increasing grazing pressure, while annual grasses and forbs increased in dominance under poor range condition. Soil erosion increased and litter decreased with decreasing range condition. An approach to quantitatively define states within a variable rainfall environment based upon a time-series ordination analysis is described. The derived model could provide the interpretive framework necessary to integrate on-ground monitoring, remote sensing and geographic information systems to trace states and transitions at the paddock scale. However, further work is needed to determine the full catalogue of states and transitions and to refine the model for application at the paddock scale.
Resumo:
We determined which factors predict the presence and abundance of Dusky Moorhens (Gallinula tenebrosa) at wetlands by surveying the ecological and habitat characteristics of 62 sites across south-east Queensland. Moorhens were observed in 48 of the sites sampled. They were more likely to be found at sites surrounded by taller terrestrial vegetation and where free-floating and attached aquatic vegetation was more abundant. The number of moorhens found at a site increased in relation to vegetation height, the abundance of attached aquatic vegetation and the number of purple swamphens observed. These results suggest that there are ecological constraints on the distribution of moorhens, and that food abundance and the availability of suitable nesting sites determine the overall distribution and abundance of moorhens in wetlands. Adult moorhens develop brightly coloured fleshy frontal shields, bills and legs when breeding, although in some populations birds maintain year-round colouration. We observed year-round breeding colouration in 23 out of 34 sampling sites that had moorhens and were surveyed in August. Coloured moorhens were found during winter at sites with higher minimum winter temperatures, and more abundant free-floating and submerged leafy vegetation. In addition, higher proportions of moorhens were coloured at sites with higher mean minimum temperatures. The retention of year-round breeding colouration appears to be restricted to areas with warmer winter temperatures and more abundant food. The results suggest that areas not occupied by moorhens are of inadequate quality to support breeding populations. We suggest that ecological constraints on independent breeding in Dusky Moorhens may have favoured the evolution of their unusual cooperative breeding system, which involves frequent mate-sharing by both sexes.
Resumo:
In 1995, the Queensland Parks and Wildlife Service, the Queensland Department of Main Roads and Redland Shire Council initiated the Koala Speed Zone Trial in the Koala Coast, south-east Queensland. The aim of the trial was to assess the effect of differential speed signs on the number of koalas ( Phascolarctos cinereus) hit by vehicles in the Koala Coast from 1995 to 1999. On the basis of information collected by the Queensland Parks and Wildlife Service 1407 koalas were hit by vehicles in the Koala Coast during the five-year study ( mean 281 koalas per year, range 251 - 315). Monitoring of vehicle speeds by the Queensland Department of Main Roads suggested that there was no significant reduction in vehicle speed during the trial period from August to December. Consequently, there was no evidence to suggest that a reduction in the number of koalas hit by vehicles occurred during the trial. Approximately 70% of koalas were hit on arterial and sub-arterial roads and approximately 83% did not survive. The location of each koala hit was recorded and the signed speed limit of the road was noted. Most koalas that were hit by vehicles were young healthy males. Pooling of data on koala collisions and road speed limits suggested that the proportion of koalas that survived being hit by vehicles was slightly higher on roads with lower speed limits. However, vehicle speed was not the only factor that affected the number of koalas hit by vehicles. It is suggested that habitat destruction, koala density and traffic volume also contribute to road-associated koala mortality in the Koala Coast.
Resumo:
Little is known about causes of endemic rarity in plants. This study pioneered an approach that determined environmental variables in the rainforest habitat and generated physiological profiles for light, water, and nutrient relations for three endemically restricted versus widespread congeneric species' pairs. We found no overall consistent differences in the physiological variables between the group of restricted species and the group of widespread species, and congeneric species pairs were therefore examined individually. Availability of soil nutrients did not differ between restricted-widespread species sites suggesting that species grow under comparable nutrient conditions. Under ambient and manipulated higher light conditions, widespread Gardenia ovularis had a greater photosynthetic activity than restricted Gardenia actinocarpa suggesting that the two species differ in their photosynthetic abilities. Differences between Xanthostemon species included lower photosynthetic activity, higher transpiration rate, and a higher foliar manganese concentration in restricted Xanthostemon formosus compared to widespread Xanthostemon chrysanthus. It is suggested that X. formosus is restricted by its high water use to its current rainforest creek edge habitat, while X. chrysanthus grows in a range of environments, although naturally found in riparian rainforest. Restricted Archidendron kanisii had higher electron transport rates, greater dissipative capacity for removal of excess light, and more efficient investment of nitrogen into photosynthetic components, than its widespread relative Archidendron whitei. These observations and previous research suggest that restricted Archidendron kanisii is in the process of expanding its range. Physiological profiles suggest a different cause of rarity for each species. This has implications for the conservation strategies required for each species. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Koala dispersal was investigated as part of a detailed ecological study of a nationally significant koala population located 20 km south-east of Brisbane, Queensland. From 1996 to 2000, 195 koalas from three sites were captured and fitted with radio-collars. A total of 40 koalas ( 23 males and 17 females) dispersed from these sites. Most (93%) dispersing individuals were 20 - 36 months of age. Three adult females ( more than 36 months old) dispersed and no adult males dispersed during the study. A significantly higher proportion of young males dispersed than females. Dispersal occurred between June and December, with most dispersal of males commencing in July and August and that of females commencing between September and November prior to, and early in, the annual breeding season. The mean straight-line distance between the natal and breeding home ranges for males and females was similar and was measured at 3.5 km ( range 1.1 - 9.7 km) and 3.4 km ( range 0.3 - 10.6 km) respectively. Dispersing males and females tended to successfully disperse south and west of their natal home ranges and were generally unable to successfully disperse to urban areas within the study area, as a high proportion of the mortality of dispersing koalas was associated with attacks by domestic dogs and with collisions with vehicles on roads. Information from other studies indicates that most young koalas disperse from their natal areas. It is likely that the social behaviour and mating systems of koala populations provide mechanisms for young koalas to disperse. The potential role of dispersal in the dynamics of regional koala populations is discussed.
Resumo:
Dugong abundances in Moreton Bay (south-east Queensland) were estimated during six bi- monthly aerial surveys throughout 1995. Sampling intensity ranged between 20 and 80% for different sampling zones within the Bay, with a mean intensity of 40.5%. Population estimates for dugongs were corrected for perception bias ( the proportion of animals visible in the transect that were missed by observers), and standardised for availability bias ( the proportion of animals that were invisible due to water turbidity) with survey and species-specific correction factors. Population estimates for dugongs in Moreton Bay ranged from 503 +/- 64 (s.e.) in July to 1019 +/- 166 in January. The highest uncorrected count was 857 dugongs in December. This is greater than previous population estimates, suggesting that either previous surveys have underestimated abundance and/or that this population may have increased through recruitment, immigration, or a combination of both. The high degree of variation in population estimates between surveys may be due to temporal differences in distribution and herding behaviour. In winter, dugongs were found in smaller herds and were dispersed over a wider area than in summer. The Eastern Banks region of the bay supported 80 - 98% of the dugong population at any one time. Within this region, there were several dugong 'hot spots' that were visited repeatedly by large herds. These 'hot spots' contained seagrass communities that were dominated by species that dugongs prefer to eat. The waters of Rous Channel, South Passage and nearby oceanic waters are also frequently inhabited by dugongs in the winter months. Dugongs in other parts of Moreton Bay were at much lower densities than on the Eastern Banks.
Resumo:
Distance sampling using line transects has not been previously used or tested for estimating koala abundance. In July 2001, a pilot survey was conducted to compare the use of line transects with strip transects for estimating koala abundance. Both methods provided a similar estimate of density. On the basis of the results of the pilot survey, the distribution and abundance of koalas in the Pine Rivers Shire, south-east Queensland, was determined using line-transect sampling. In total, 134 lines (length 64 km) were used to sample bushland areas. Eighty-two independent koalas were sighted. Analysis of the frequency distribution of sighting distances using the software program DISTANCE enabled a global detection function to be estimated for survey sites in bushland areas across the Shire. Abundance in urban parts of the Shire was estimated from densities obtained from total counts at eight urban sites that ranged from 26 to 51 ha in size. Koala abundance in the Pine Rivers Shire was estimated at 4584 (95% confidence interval, 4040-5247). Line-transect sampling is a useful method for estimating koala abundance provided experienced koala observers are used when conducting surveys.