933 resultados para Broiler breeder pullet
Resumo:
The aim of this study was to develop and validate an ELISA for detecting chicken antibodies to Eimeria tenella. An initial comparison of merozoite and sporozoite antigen preparations revealed few differences in their ability to monitor the onset, kinetics and magnitude of the antibody response suggesting that both antigens would be equally useful for development of an ELISA. Furthermore the cross-reactivity of these antigens with sera from birds infected with chicken Eimeria species was similar. The merozoite antigen was selected for further evaluation because it was easier to prepare. Discrimination between sera from birds experimentally infected with E. tenella and birds maintained in an Eimeria-free isolation facility was excellent. In sera collected from free-range layers and commercial broilers there also appeared to be clear discrimination between infected and uninfected birds. The ELISA should prove useful for monitoring infectivity in vaccination programmes in layer and breeder flocks and for assessing the effectiveness of biosecurity measures in broiler flocks.
Resumo:
Spinosad was proposed as a potential chemical for control of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in Australian broiler houses after the detection of strong cyfluthrin resistance in many beetle populations. In 2004-2006, spinosad susceptibility of 13 beetle populations from eastern and southern Australian broiler houses and a cyfluthrin/fenitrothion-resistant reference population was determined using topical application, and was compared with the susceptibility of an insecticide-susceptible reference population. Comparisons of dose-response curves and baseline data showed that all populations, including the insecticide-susceptible population, were roughly equivalent in their response to spinosad, indicating no preexisting spinosad resistance. Two field populations, including the resistant reference population, which had confirmed cyfluthrin/fenitrothion- resistance, showed no cross-resistance to spinosad. There was no significant correlation between beetle weight and LC99.9. A discriminating concentration of 3% spinosad was set to separate resistant and susceptible individuals. Considering the levels of spinosad resistance that have been recorded in other insect pests, the sustained future usefulness of spinosad as a broiler house treatment will rely on effective integrated beetle management programs combined with carefully planned chemical use strategies.
Resumo:
Since meat from poultry colonized with Campylobacter spp. is a major cause of bacterial gastroenteritis, human exposure should be reduced by, among other things, prevention of colonization of broiler flocks. To obtain more insight into possible sources of introduction of Campylobacter into broiler flocks, it is essential to estimate the moment that the first bird in a flock is colonized. If the rate of transmission within a flock were known, such an estimate could be determined from the change in the prevalence of colonized birds in a flock over time. The aim of this study was to determine the rate of transmission of Campylobacter using field data gathered for 5 years for Australian broiler flocks. We used unique sampling data for 42 Campylobacter jejuni-colonized flocks and estimated the transmission rate, which is defined as the number of secondary infections caused by one colonized bird per day. The estimate was 2.37 +/- 0.295 infections per infectious bird per day, which implies that in our study population colonized flocks consisting of 20,000 broilers would have an increase in within-flock prevalence to 95% within 4.4 to 7.2 days after colonization of the first broiler. Using Bayesian analysis, the moment of colonization of the first bird in a flock was estimated to be from 21 days of age onward in all flocks in the study. This study provides an important quantitative estimate of the rate of transmission of Campylobacter in broiler flocks, which could be helpful in future studies on the epidemiology of Campylobacter in the field.
Resumo:
Factors that influence the localized abundance and distribution of lesser mealworm, Alphitobius diaperinus (Panzer), in litter of two compacted earth-floor broiler houses in subtropical Australia were studied using various experimental manipulations. Numbers of lesser mealworms substantially increased inside caged areas and under uncaged empty feed pans placed in open areas of the houses. These populations were found to be localized and independent of chicken-feed, manure, and high beetle populations that normally occur under existing feed pans. Substantial horizontal movement of larvae to under feed pans was recorded. Placing metal barriers around these pans significantly restricted this movement. In almost all treatments, lesser mealworms typically peaked in numbers during the middle of the flock time. This temporal pattern of abundance also was observed under pans within barriers, where relatively low insect numbers occurred, but it was not observed in uncaged open areas (where chickens had complete access). It is likely that larvae do not establish in open areas, but fluctuate in numbers as they either move to refuges away from chickens or suffer high rates of mortality. In these refuges, larvae peak in numbers and then leave the litter environment to pupate in the earth floor before the end of the flock time. This behavior might be exploited for management of lesser mealworm by targeting applications of control agents.
Resumo:
This study assessed the levels of two key pathogens, Salmonella and Campylobacter, along with the indicator organism Escherichia coli in aerosols within and outside poultry sheds. The study ranged over a 3-year period on four poultry farms and consisted of six trials across the boiler production cycle of around 55 days. Weekly testing of litter and aerosols was carried out through the cycle. A key point that emerged is that the levels of airborne bacteria are linked to the levels of these bacteria in litter. This hypothesis was demonstrated by E. coli. The typical levels of E. coli in litter were similar to 10(8) CFU g(-1) and, as a consequence, were in the range of 10(2) to 10(4) CFU m(-3) in aerosols, both inside and outside the shed. The external levels were always lower than the internal levels. Salmonella was only present intermittently in litter and at lower levels (10(3) to 10(5) most probable number [MPN] g(-1)) and consequently present only intermittently and at low levels in air inside (range of 0.65 to 4.4 MPN m(-3)) and once outside (2.3 MPN m(-3)). The Salmonella serovars isolated in litter were generally also isolated from aerosols and dust, with the Salmonella serovars Chester and Sofia being the dominant serovars across these interfaces. Campylobacter was detected late in the production cycle, in litter at levels of around 107 MPN g(-1). Campylobacter was detected only once inside the shed and then at low levels of 2.2 MPN m(-3). Thus, the public health risk from these organisms in poultry environments via the aerosol pathway is minimal.
Resumo:
Odour emission rates were measured from nine tunnel-ventilated broiler farms in south-eastern Queensland, Australia. At one farm, odour emission rates were measured over two sequential batches approximately weekly, while at the remaining farms, odour emission rates were measured just before the first pickup (around Day 35 of the batch) when bird liveweight was greatest and peak odour emission rates were expected. Odour samples were analysed using dynamic olfactometry (to AS/NZS 4323.3:2001), and an artificial olfaction system was used to continuously monitor odour emission rates at one farm. Odour emission rates ranged from 330 to 2960 ou/s per 1000 birds and from 0.19 to 2.12 ou/s.kg, with a significant amount of variability observed throughout the batch and throughout each sampling day. While the wide range in odour emission rates was primarily due to changes in bird liveweight and ventilation requirements, other factors were also involved. The artificial olfaction system proved useful for quantifying the range and variability of odour emission rates, especially when olfactometry analysis was impractical.
Resumo:
Improving reproductive traits of breeder herd.
Resumo:
The Australian chicken meat industry requires effective agents for the management of lesser mealworm in broiler houses. The only two appropriate insecticides currently registered are cyfluthrin and spinosad, with gamma cyhalothrin being developed for registration. The industry requires the efficacy of cyfluthrin to be investigated, with progress and adoption of the latter two chemicals. Optimising the efficacy of each chemical and studying them singly and in rotation will, in addition to improving their efficacy, reduce overall insecticide use and improve their cost effectiveness.
Resumo:
For approximately three decades the Australian broiler industry has relied heavily on the use of insecticides as its key tool for management of darkling beetle or lesser mealworm, Alphitobius diaperinus [Panzer] in broiler houses. The use of these chemicals over this period has been largely unchecked which has resulted in the development of strong insecticide resistance in many beetle populations from broiler farms. Although we are in a period now with an improved knowledge of managing resistance and the availability of new more effective insecticides that are currently marketed, the industry still requires more pest management options in order to inhibit development of resistance and reduce overall chemical use. In response to this need, ‘natural’ agents such as entomopathogenic nematodes and fungi were proposed as potential agents for managing darkling beetle populations in Australian broiler houses. Since 2007 laboratory and field studies have been undertaken to assess these agents. This report outlines these studies and discusses potential benefits to the Chicken Meat industry resulting from this research.
Resumo:
This study has examined the dynamics (in terms of levels and serovar diversity) of Salmonella in the "dual litter environment" that occurs within a single shed as a result of a management practice common in Australia. The study also looked at the physical parameters of the litter (pH, moisture content, water activity and litter temperature) as a means of understanding the Salmonella dynamics in these litter environments. The Australian practice results in the brooder end of the shed having new litter each cycle while the grow-out end has re-used litter (a "dual litter environment"). Two farms that adopted this partial litter re-use practice were studied over one full broiler cycle each. Litter was sampled weekly for the levels (and serovars) of Salmonella during a farming cycle. There was a trend for lower levels of Salmonella (and a lower Salmonella serovar) diversity in the re-used litter environment as compared with the new litter environment. Of the physical parameters examined, it would appear that the lower water activity associated with the re-used litter may contribute to the Salmonella dynamics in the dual environment.
Resumo:
Campylobacter is an important food borne pathogen, mainly associated with poultry. A lack of through-chain quantitative Campylobacter data has been highlighted within quantitative risk assessments. The aim of this study was to quantitatively and qualitatively measure Campylobacter and Escherichia coli concentration on chicken carcasses through poultry slaughter. Chickens (n = 240) were sampled from each of four flocks along the processing chain, before scald, after scald, before chill, after chill, after packaging and from individual caeca. The overall prevalence of Campylobacter after packaging was 83% with a median concentration of 0.8 log10 CFU/mL. The processing points of scalding and chilling had significant mean reductions of both Campylobacter (1.8 and 2.9 log10 CFU/carcase) and E. coli (1.3 and 2.5 log10 CFU/carcase). The concentration of E. coli and Campylobacter was significantly correlated throughout processing indicating that E. coli may be a useful indicator organism for reductions in Campylobacter concentration. The carriage of species varied between flocks, with two flocks dominated by Campylobacter coli and two flocks dominated by Campylobacter jejuni. Current processing practices can lead to significant reductions in the concentration of Campylobacter on carcasses. Further understanding of the variable effect of processing on Campylobacter and the survival of specific genotypes may enable more targeted interventions to reduce the concentration of this poultry associated pathogen.
Resumo:
Thus the objectives of this study can be broadly categorised as follows:- Evaluate current practices adopted (e.g. litter pile-up) prior to re-use of litter for subsequent chicken cycles To establish pathogen die-off that occurs during currently adopted methods of in-shed treatment of litter To establish simple physical parameters to monitor this pathogen reduction and create an understanding of such reduction strategies to aid in-shed management of re-use litter To carry out studies to assess the potential of the re-used litter (once spread) to support pathogens during a typical chicken production cycle. To provide background data for the development of a simple code of practice for an in-shed litter pile-up process
Resumo:
Low level strategic supplements constitute one of the few options for northern beef producers to increase breeder productivity and profitability. Objectives of the project were to improve the cost-effectiveness of using such supplements and to improve supplement delivery systems. Urea-based supplements fed during the dry season can substantially reduce breeder liveweight loss and increase fertility during severe dry seasons. Also when fed during the late wet season these supplements increased breeder body liveweight and increased fertility of breeders in low body condition. Intake of dry lick supplements fed free choice is apparently determined primarily by the palatability of supplements relative to pasture, and training of cattle appears to be of limited importance. Siting of supplementation points has some effect on supplement intake, but little effect on grazing behaviour. Economic analysis of supplementation (urea, phosphorus or molasses) and weaning strategies was based on the relative efficacy of these strategies to maintain breeder body condition late in the dry season. Adequate body condition of breeders at this time of the year is needed to avoid mortality from under-nutrition and achieve satisfactory fertility of breeders during the following wet season. Supplements were highly cost-effective when they reduced mortality, but economic returns were generally low if the only benefit was increased fertility.
Resumo:
Limitations in quality bedding material have resulted in the growing need to re-use litter during broiler farming in some countries, which can be of concern from a food-safety perspective. The aim of this study was to compare the Campylobacter levels in ceca and litter across three litter treatments under commercial farming conditions. The litter treatments were (a) the use of new litter after each farming cycle; (b) an Australian partial litter re-use practice; and (c) a full litter re-use practice. The study was carried out on two farms over two years (Farm 1, from 2009–2010 and Farm 2, from 2010–2011), across three sheds (35,000 to 40,000 chickens/shed) on each farm, adopting three different litter treatments across six commercial cycles. A random sampling design was adopted to test litter and ceca for Campylobacter and Escherichia coli, prior to commercial first thin-out and final pick-up. Campylobacter levels varied little across litter practices and farming cycles on each farm and were in the range of log 8.0–9.0 CFU/g in ceca and log 4.0–6.0 MPN/g for litter. Similarly the E. coli in ceca were ∼log 7.0 CFU/g. At first thin-out and final pick-up, the statistical analysis for both litter and ceca showed that the three-way interaction (treatments by farms by times) was highly significant (P < 0.01), indicating that the patterns of Campylobacter emergence/presence across time vary between the farms, cycles and pickups. The emergence and levels of both organisms were not influenced by litter treatments across the six farming cycles on both farms. Either C. jejuni or C. coli could be the dominant species across litter and ceca, and this phenomenon could not be attributed to specific litter treatments. Irrespective of the litter treatments in place, cycle 2 on Farm 2 remained campylobacter-free. These outcomes suggest that litter treatments did not directly influence the time of emergence and levels of Campylobacter and E. coli during commercial farming.