126 resultados para Bram Stoker
Resumo:
[ES]drácula es un personaje real del siglo XV: príncipe de Valaquia, valiente luchador contra el imperio otomano por la independencia de su país, justo, pero muy cruel con los enemigos, cualidades que le confieren la inmortalidad de los personajes históricos. protagonista de creaciones literarias ya en su vida, se convierte en leyenda y adquiere la inmortalidad del vampiro gracias a stoker. Y, a la vez, la inmortalidad de los persona - jes de leyenda, literarios, pictóricos, musicales y cinematográficos, gracias a las numerosísimas creaciones artísticas inspiradas en su figura.
Resumo:
Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.
Resumo:
Psychological models of mental disorders guide research into psychological and environmental factors that elicit and maintain mental disorders as well as interventions to reduce them. This paper addresses four areas. (1) Psychological models of mental disorders have become increasingly transdiagnostic, focusing on core cognitive endophenotypes of psychopathology from an integrative cognitive psychology perspective rather than offering explanations for unitary mental disorders. It is argued that psychological interventions for mental disorders will increasingly target specific cognitive dysfunctions rather than symptom-based mental disorders as a result. (2) Psychotherapy research still lacks a comprehensive conceptual framework that brings together the wide variety of findings, models and perspectives. Analysing the state-of-the-art in psychotherapy treatment research, “component analyses” aiming at an optimal identification of core ingredients and the mechanisms of change is highlighted as the core need towards improved efficacy and effectiveness of psychotherapy, and improved translation to routine care. (3) In order to provide more effective psychological interventions to children and adolescents, there is a need to develop new and/or improved psychotherapeutic interventions on the basis of developmental psychopathology research taking into account knowledge of mediators and moderators. Developmental neuroscience research might be instrumental to uncover associated aberrant brain processes in children and adolescents with mental health problems and to better examine mechanisms of their correction by means of psychotherapy and psychological interventions. (4) Psychotherapy research needs to broaden in terms of adoption of large-scale public health strategies and treatments that can be applied to more patients in a simpler and cost-effective way. Increased research on efficacy and moderators of Internet-based treatments and e-mental health tools (e.g. to support “real time” clinical decision-making to prevent treatment failure or relapse) might be one promising way forward.
Resumo:
AIMS In this work, we provide novel insight into the morphology of dissecting abdominal aortic aneurysms in angiotensin II-infused mice. We demonstrate why they exhibit a large variation in shape and, unlike their human counterparts, are located suprarenally rather than infrarenally. METHODS AND RESULTS We combined synchrotron-based, ultra-high resolution ex vivo imaging (phase contrast X-Ray tomographic microscopy) with in vivo imaging (high-frequency ultrasound and contrast-enhanced micro-CT) and image-guided histology. In all mice, we observed a tear in the tunica media of the abdominal aorta near the ostium of the celiac artery. Independently we found that, unlike the gradual luminal expansion typical for human aneurysms, the outer diameter increase of angiotensin II-induced dissecting aneurysms in mice was related to one or several intramural haematomas. These were caused by ruptures of the tunica media near the ostium of small suprarenal side branches, which had never been detected by the established small animal imaging techniques. The tear near the celiac artery led to apparent luminal dilatation, while the intramural haematoma led to a dissection of the tunica adventitia on the left suprarenal side of the aorta. The number of ruptured branches was higher in those aneurysms that extended into the thoracic aorta, which explained the observed variability in aneurysm shape. CONCLUSION Our results are the first to describe apparent luminal dilatation, suprarenal branch ruptures, and intramural haematoma formation in dissecting abdominal aortic aneurysms in mice. Moreover, we validate and demonstrate the vast potential of phase contrast X-ray tomographic microscopy in cardiovascular small animal applications.
Resumo:
All-sky Meteor Orbit System (AMOS) is a semi-autonomous video observatory for detection of transient events on the sky, mostly the meteors. Its hardware and software development and permanent placement on several locations in Slovakia allowed the establishment of Slovak Video Meteor Network (SVMN) monitoring meteor activity above the Central Europe. The data reduction, orbital determination and additional results from AMOS cameras–the SVMN database– as well as from observational expeditions on Canary Islands and in Canada provided dynamical and physical data for better understanding of mutual connections between parent bodies of asteroids and comets and their meteoroid streams. We present preliminary results on exceptional and rare meteor streams such as September ε Perseids (SPE) originated from unknown long periodic comet on a retrograde orbit, suspected asteroidal meteor stream of April α Comae Berenicids (ACO) in the orbit of meteorites Příbram and Neuschwanstein and newly observed meteor stream Camelopardalids (CAM) originated from Jupiter family comet 209P/Linear.
Resumo:
Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway. In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with breast or ovarian cancers. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases. In particular, little is known about BRCA1-independent restoration of HR. Here we show that loss of REV7 (also known as MAD2L2) in mouse and human cell lines re-establishes CTIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, which is reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX-MDC1-RNF8-RNF168-53BP1 chromatin pathway, and seems to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining during immunoglobulin class switch recombination. Our results reveal an unexpected crucial function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells.
Resumo:
INTRODUCTION Since the initial publication in 2000, Angiotensin II-infused mice have become one of the most popular models to study abdominal aortic aneurysm in a pre-clinical setting. We recently used phase contrast X-ray based computed tomography to demonstrate that these animals develop an apparent luminal dilatation and an intramural hematoma, both related to mural ruptures in the tunica media in the vicinity of suprarenal side branches. AIMS The aim of this narrative review was to provide an extensive overview of small animal applicable techniques that have provided relevant insight into the pathogenesis and morphology of dissecting AAA in mice, and to relate findings from these techniques to each other and to our recent PCXTM-based results. Combining insights from recent and consolidated publications we aimed to enhance our understanding of dissecting AAA morphology and anatomy. RESULTS AND CONCLUSION We analyzed in vivo and ex vivo images of aortas obtained from macroscopic anatomy, histology, high-frequency ultrasound, contrast-enhanced micro-CT, micro-MRI and PCXTM. We demonstrate how in almost all publications the aorta has been subdivided into a part in which an intact lumen lies adjacent to a remodeled wall/hematoma, and a part in which elastic lamellae are ruptured and the lumen appears to be dilated. We show how the novel paradigm fits within the existing one, and how 3D images can explain and connect previously published 2D structures. We conclude that PCXTM-based findings are in line with previous results, and all evidence points towards the fact that dissecting AAAs in Angiotensin II-infused mice are actually caused by ruptures of the tunica media in the immediate vicinity of small side branches.
Resumo:
Este Diccionario Biográfico de Matemáticos incluye más de 2040 reseñas de matemáticos, entre las que hay unas 280 de españoles y 36 de mujeres (Agnesi, Blum, Byron, Friedman, Hipatia, Robinson, Scott, etc.), de las que 11 son españolas (Casamayor, Sánchez Naranjo, Sanz-Solé, etc.). Se ha obtenido la mayor parte de las informaciones por medio de los libros recogidos en el apéndice “Bibliografía consultada”; otra parte, de determinadas obras matemáticas de los autores reseñados (estas obras no están incluidas en el citado apéndice, lo están en las correspondientes reseñas de sus autores). Las obras más consultadas han sido las de Boyer, Cajori, Kline, Martinón, Peralta, Rey Pastor y Babini, Wieleitner, las Enciclopedias Espasa, Británica, Larousse, Universalis y Wikipedia. Entre las reseñas incluidas, destacan las siguientes, en orden alfabético: Al-Khuwairizmi, Apolonio, Arquímedes, Jacob y Johann Bernoulli, Brouwer, Cantor, Cauchy, Cayley, Descartes, Diofanto, Euclides, Euler, Fermat, Fourier, Galileo, Gauss, Hilbert, Lagrange, Laplace, Leibniz, Monge, Newton, Pappus, Pascal, Pitágoras, Poincaré, Ptolomeo, Riemann, Weierstrass, etc. Entre los matemáticos españoles destacan las de Echegaray, Etayo, Puig Adam, Rey Pastor, Reyes Prósper, Terradas (de quien Einstein dijo: “Es uno de los seis primeros cerebros mundiales de su tiempo y uno de los pocos que pueden comprender hoy en día la teoría de la relatividad”), Torre Argaiz, Torres Quevedo, los Torroja, Tosca, etc. Se han incluido varias referencias de matemáticos nacidos en la segunda mitad del siglo XX. Entre ellos descuellan nombres como Perelmán o Wiles. Pero para la mayor parte de ellos sería conveniente un mayor distanciamiento en el tiempo para poder dar una opinión más objetiva sobre su obra. Las reseñas no son exhaustivas. Si a algún lector le interesa profundizar en la obra de un determinado matemático, puede utilizar con provecho la bibliografía incluida, o también las obras recogidas en su reseña. En cada reseña se ha seguido la secuencia: nombre, fechas de nacimiento y muerte, profesión, nacionalidad, breve bosquejo de su vida y exposición de su obra. En algunos casos, pocos, no se ha podido encontrar el nombre completo. Cuando sólo existe el año de nacimiento, se indica con la abreviatura “n.”, y si sólo se conoce el año de la muerte, con la abreviatura “m.”. Si las fechas de nacimiento y muerte son sólo aproximadas, se utiliza la abreviatura “h.” –hacia–, abreviatura que también se utiliza cuando sólo se conoce que vivió en una determinada época. Esta utilización es, entonces, similar a la abreviatura clásica “fl.” –floreció–. En algunos casos no se ha podido incluir el lugar de nacimiento del personaje o su nacionalidad. No todos los personajes son matemáticos en sentido estricto, aunque todos ellos han realizado importantes trabajos de índole matemática. Los hay astrónomos como, por ejemplo, Brahe, Copérnico, Laplace; físicos como Dirac, Einstein, Palacios; ingenieros como La Cierva, Shannon, Stoker, Torres Quevedo (muchos matemáticos, considerados primordialmente como tales, se formaron como ingenieros, como Abel Transon, Bombelli, Cauchy, Poincaré); geólogos, cristalógrafos y mineralogistas como Barlow, Buerger, Fedorov; médicos y fisiólogos como Budan, Cardano, Helmholtz, Recorde; naturalistas y biólogos como Bertalanfly, Buffon, Candolle; anatomistas y biomecánicos como Dempster, Seluyanov; economistas como Black, Scholes; estadísticos como Akaike, Fisher; meteorólogos y climatólogos como Budyko, Richardson; filósofos como Platón, Aristóteles, Kant; religiosos y teólogos como Berkeley, Santo Tomás; historiadores como Cajori, Eneström; lingüistas como Chomsky, Grassmann; psicólogos y pedagogos como Brousseau, Fishbeim, Piaget; lógicos como Boole, Robinson; abogados y juristas como Averroes, Fantet, Schweikart; escritores como Aristófanes, Torres de Villarroel, Voltaire; arquitectos como Le Corbusier, Moneo, Utzon; pintores como Durero, Escher, Leonardo da Vinci (pintor, arquitecto, científico, ingeniero, escritor, lingüista, botánico, zoólogo, anatomista, geólogo, músico, escultor, inventor, ¿qué es lo que 6 no fue?); compositores y musicólogos como Gugler, Rameau; políticos como Alfonso X, los Banu Musa, los Médicis; militares y marinos como Alcalá Galiano, Carnot, Ibáñez, Jonquières, Poncelet, Ulloa; autodidactos como Fermat, Simpson; con oficios diversos como Alcega (sastre), Argand (contable), Bosse (grabador), Bürgi (relojero), Dase (calculista), Jamnitzer (orfebre), Richter (instrumentista), etc. También hay personajes de ficción como Sancho Panza (siendo gobernador de la ínsula Barataria, se le planteó a Sancho una paradoja que podría haber sido formulada por Lewis Carroll; para resolverla, Sancho aplicó su sentido de la bondad) y Timeo (Timeo de Locri, interlocutor principal de Platón en el diálogo Timeo). Se ha incluido en un apéndice una extensa “Tabla Cronológica”, donde en columnas contiguas están todos los matemáticos del Diccionario, las principales obras matemáticas (lo que puede representar un esbozo de la historia de la evolución da las matemáticas) y los principales acontecimientos históricos que sirven para situar la época en que aquéllos vivieron y éstas se publicaron. Cada matemático se sitúa en el año de su nacimiento, exacto o aproximado; si no se dispone de este dato, en el año de su muerte, exacto o aproximado; si no se dispone de ninguna de estas fechas, en el año aproximado de su florecimiento. Si sólo se dispone de un periodo de tiempo más o menos concreto, el personaje se clasifica en el año más representativo de dicho periodo: por ejemplo, en el año 250 si se sabe que vivió en el siglo III, o en el año -300 si se sabe que vivió hacia los siglos III y IV a.C. En el apéndice “Algunos de los problemas y conjeturas expuestos en el cuerpo del Diccionario”, se ha resumido la situación actual de algunos de dichos problemas y conjeturas. También se han incluido los problemas que Hilbert planteó en 1900, los expuestos por Smale en 1997, y los llamados “problemas del milenio” (2000). No se estudian con detalle, sólo se indica someramente de qué tratan. Esta segunda edición del Diccionario Biográfico de Matemáticos tiene por objeto su puesta a disposición de la Escuela de Ingenieros de Minas de la Universidad Politécnica de Madrid.
Resumo:
Modern Field Programmable Gate Arrays (FPGAs) are power packed with features to facilitate designers. Availability of features like huge block memory (BRAM), Digital Signal Processing (DSP) cores, embedded CPU makes the design strategy of FPGAs quite different from ASICs. FPGA are also widely used in security-critical application where protection against known attacks is of prime importance. We focus ourselves on physical attacks which target physical implementations. To design countermeasures against such attacks, the strategy for FPGA designers should also be different from that in ASIC. The available features should be exploited to design compact and strong countermeasures. In this paper, we propose methods to exploit the BRAMs in FPGAs for designing compact countermeasures. BRAM can be used to optimize intrinsic countermeasures like masking and dual-rail logic, which otherwise have significant overhead (at least 2X). The optimizations are applied on a real AES-128 co-processor and tested for area overhead and resistance on Xilinx Virtex-5 chips. The presented masking countermeasure has an overhead of only 16% when applied on AES. Moreover Dual-rail Precharge Logic (DPL) countermeasure has been optimized to pack the whole sequential part in the BRAM, hence enhancing the security. Proper robustness evaluations are conducted to analyze the optimization for area and security.