998 resultados para Brain injuries
Resumo:
Abstract Bradykinin (BK) was shown to stimulate the production of physiologically active metabolites, blood-brain barrier disruption, and brain edema. The aim of this prospective study was to measure BK concentrations in blood and cerebrospinal fluid (CSF) of patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), and ischemic stroke and to correlate BK levels with the extent of cerebral edema and intracranial pressure (ICP). Blood and CSF samples of 29 patients suffering from acute cerebral lesions (TBI, 7; SAH,: 10; ICH, 8; ischemic stroke, 4) were collected for up to 8 days after insult. Seven patients with lumbar drainage were used as controls. Edema (5-point scale), ICP, and the GCS (Glasgow Coma Score) at the time of sample withdrawal were correlated with BK concentrations. Though all plasma-BK samples were not significantly elevated, CSF-BK levels of all patients were significantly elevated in overall (n=73) and early (≤72 h) measurements (n=55; 4.3±6.9 and 5.6±8.9 fmol/mL), compared to 1.2±0.7 fmol/mL of controls (p=0.05 and 0.006). Within 72 h after ictus, patients suffering from TBI (p=0.01), ICH (p=0.001), and ischemic stroke (p=0.02) showed significant increases. CSF-BK concentrations correlated with extent of edema formation (r=0.53; p<0.001) and with ICP (r=0.49; p<0.001). Our results demonstrate that acute cerebral lesions are associated with increased CSF-BK levels. Especially after TBI, subarachnoid and intracerebral hemorrhage CSF-BK levels correlate with extent of edema evolution and ICP. BK-blocking agents may turn out to be effective remedies in brain injuries.
Resumo:
We report the case of a 22-year-old man after severe cranial trauma, who was noted to have conjugate eye deviation (CED) to the left. A magnetic resonance imaging (MRI) scan demonstrated a lesion in the left (ipsilateral) striatal-subthalamic region. The involvement of supranuclear fibres from the left frontal eye field (FEF) traveling to the right parapontine reticular formation (PPRF) could explain this clinical finding. Alternatively, involvement of deep brain nuclei, such as the striatum and the subthalamic nucleus, could be responsible for this phenomenon. This neurological presentation is unusual after severe cranial trauma.
Resumo:
Innate immune responses play a central role in neuroprotection and neurotoxicity during inflammatory processes that are triggered by pathogen-associated molecular pattern-exhibiting agents such as bacterial lipopolysaccharide (LPS) and that are modulated by inflammatory cytokines such as interferon γ (IFNγ). Recent findings describing the unexpected complexity of mammalian genomes and transcriptomes have stimulated further identification of novel transcripts involved in specific physiological and pathological processes, such as the neural innate immune response that alters the expression of many genes. We developed a system for efficient subtractive cloning that employs both sense and antisense cRNA drivers, and coupled it with in-house cDNA microarray analysis. This system enabled effective direct cloning of differentially expressed transcripts, from a small amount (0.5 µg) of total RNA. We applied this system to isolation of genes activated by LPS and IFNγ in primary-cultured cortical cells that were derived from newborn mice, to investigate the mechanisms involved in neuroprotection and neurotoxicity in maternal/perinatal infections that cause various brain injuries including periventricular leukomalacia. A number of genes involved in the immune and inflammatory response were identified, showing that neonatal neuronal/glial cells are highly responsive to LPS and IFNγ. Subsequent RNA blot analysis revealed that the identified genes were activated by LPS and IFNγ in a cooperative or distinctive manner, thereby supporting the notion that these bacterial and cellular inflammatory mediators can affect the brain through direct but complicated pathways. We also identified several novel clones of apparently non-coding RNAs that potentially harbor various regulatory functions. Characterization of the presently identified genes will give insights into mechanisms and interventions not only for perinatal infection-induced brain damage, but also for many other innate immunity-related brain disorders.
Resumo:
Among the numerous clinical syndromes observed after severe traumatic head injury, post-traumatic mutism is a disorder rarely reported in adults and not studied in any detail in children. We report seven children between the ages of 3 1/2 and 14 years who sustained severe head injury and developed post-traumatic mutism. We aim to give a precise clinical characterization of this disorder, discuss differential diagnosis and correlations with brain imaging and suggest its probable neurological substrate. After a coma lasting from 5 to 25 days, the seven patients who suffered from post-traumatic mutism went through a period of total absence of verbal production lasting from 5 to 94 days, associated with the recovery of non-verbal communication skills and emotional vocalization. During the first days after the recovery of speech, all patients were able to produce correct small sentences with a hypophonic and monotonous voice, moderate dysarthria, word finding difficulties but no signs of aphasia, and preserved oral comprehension. The neurological signs in the acute phase (III nerve paresis in three of seven patients, signs of autonomic dysfunctions in five of seven patients), the results of the brain imaging and the experimental animal data all suggest the involvement of mesencephalic structures as playing a key role in the aetiology of post-traumatic mutism.
Resumo:
Glucocorticoids are used in an attempt to reduce brain edema secondary to head injury. Nevertheless, their usefulness remains uncertain and contradictory. In a randomized study of 24 children with severe head injury, urinary free cortisol was measured by radioimmunoassay. Twelve patients (group 1) received dexamethasone and 12 (group 2) did not. All patients were treated with a standardized regimen. In group 1 there was complete suppression of endogenous cortisol production. In group 2 free cortisol was up to 20-fold higher than under basal conditions and reached maximum values on days 1-3. Since the excretion of cortisol in urine reflects the production rate closely and is not influenced by liver function and barbiturates, the results in group 2 show that the endogenous production of steroids is an adequate reaction to severe head injury. Exogenous glucocorticoids are thus unlikely to have any more beneficial effects than endogenous cortisol.
Resumo:
In humans, touching the skin is known to activate, among others, the contralateral primary somatosensory cortex on the postcentral gyrus together with the bilateral parietal operculum (i.e. the anatomical site of the secondary somatosensory cortex). But which brain regions beyond the postcentral gyrus specifically contribute to the perception of touch remains speculative. In this study we collected structural magnetic resonance imaging scans and neurological examination reports of patients with brain injuries or stroke in the left or right hemisphere, but not in the postcentral gyrus as the entry site of cortical somatosensory processing. Using voxel-based lesion-symptom mapping, we compared patients with impaired touch perception (i.e. hypoaesthesia) to patients without such touch impairments. Patients with hypoaesthesia as compared to control patients differed in one single brain cluster comprising the contralateral parietal operculum together with the anterior and posterior insular cortex, the putamen, as well as subcortical white matter connections reaching ventrally towards prefrontal structures. This finding confirms previous speculations on the 'ventral pathway of somatosensory perception' and causally links these brain structures to the perception of touch.
Resumo:
Severe head injury induces major hormonal, humoral and metabolic changes, characterized by increases in stress hormone secretion, lymphokines production, associated with high lipid and protein catabolism as well as changes in energy expenditure (EE). Numerous factors influence EE in head-injured patients, particularly anthropometric data, body temperature, nutritional support, level of consciousness, muscular tone and activity. Resting EE is usually increased following brain trauma; however, normal or decreased metabolic rates can be observed in curarized patients on mechanical ventilation or in patients receiving high doses of barbiturates.
Resumo:
OBJECTIVE: To identify clinical and pupillographic features of patients with a relative afferent pupillary defect (RAPD) without visual acuity or visual field loss caused by a lesion in the dorsal midbrain. DESIGN: Experimental study. PARTICIPANTS AND CONTROLS: Four patients with a dorsal midbrain lesion who had normal visual fields and a clinically detectable RAPD. METHODS: The pupil response from full-field and hemifield light stimulation over a range of light intensities was measured by computerized binocular pupillography. MAIN OUTCOME MEASURES: The mean of the direct and consensual pupil response to full-field and hemifield light stimulation was plotted as a function of stimulus light intensity. RESULTS: All 4 subjects showed decreased pupillographic responses at all intensities to full-field light stimulation in the eye with the clinical RAPD. The pupillographic responses to hemifield stimulation showed a homonymous pattern of deficit on the side ipsilateral to the RAPD, similar to that observed in a previously reported patient with an optic tract lesion. CONCLUSIONS: The basis of a midbrain RAPD is the nasal-temporal asymmetry of pupillomotor input that becomes manifest when a unilateral postchiasmal lesion interrupts homonymously paired fibers traveling in the contralateral optic tract or midbrain pathway to the pupillomotor center, respectively. The pupillographic characteristics of an RAPD resulting from a dorsal midbrain lesion thus resemble those of an RAPD resulting from a unilateral optic tract lesion, but without the homonymous visual field defect. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Resumo:
The emergency medicine appears more and more as a transversal discipline, leaning on specific competences regularly updated with evidence-based medicine concepts. This selection of recent articles presents an update on frequent conditions, including the place of neuroimaging for patients with seizures or minor head injuries, the management of acute cocaine intoxications, the diagnosis of aortic dissections, or the management of cardiopulmonary arrest. The primary care physician will find elements of diagnostic or therapeutic strategies. This selection reflects the dynamism of emergency medicine.
Resumo:
The occurrence of microvascular and small macrovascular lesions and Alzheimer's disease (AD)-related pathology in the aging human brain is a well-described phenomenon. Although there is a wide consensus about the relationship between macroscopic vascular lesions and incident dementia, the cognitive consequences of the progressive accumulation of these small vascular lesions in the human brain are still a matter of debate. Among the vast group of small vessel-related forms of ischemic brain injuries, the present review discusses the cognitive impact of cortical microinfarcts, subcortical gray matter and deep white matter lacunes, periventricular and diffuse white matter demyelinations, and focal or diffuse gliosis in old age. A special focus will be on the sub-types of microvascular lesions not detected by currently available neuroimaging studies in routine clinical settings. After providing a critical overview of in vivo data on white matter demyelinations and lacunes, we summarize the clinicopathological studies performed by our center in large cohorts of individuals with microvascular lesions and concomitant AD-related pathology across two age ranges (the younger old, 65-85 years old, versus the oldest old, nonagenarians and centenarians). In conjunction with other autopsy datasets, these observations fully support the idea that cortical microinfarcts are the only consistent determinant of cognitive decline across the entire spectrum from pure vascular cases to cases with combined vascular and AD lesion burden.
Resumo:
We describe the most frequent emergencies in pediatrics and discuss their differential diagnosis and therapy. Dyspnea, shock, coma, convulsions, infectious CNS affections, head injury and burns are reported in detail. The importance of correct diagnosis and correct clinical assessment is emphasized, as they influence therapy and further management of the patients.
Resumo:
OBJECTIVE: Although intracranial hypertension is one of the important prognostic factors after head injury, increased intracranial pressure (ICP) may also be observed in patients with favourable outcome. We have studied whether the value of ICP monitoring can be augmented by indices describing cerebrovascular pressure-reactivity and pressure-volume compensatory reserve derived from ICP and arterial blood pressure (ABP) waveforms. METHOD: 96 patients with intracranial hypertension were studied retrospectively: 57 with fatal outcome and 39 with favourable outcome. ABP and ICP waveforms were recorded. Indices of cerebrovascular reactivity (PRx) and cerebrospinal compensatory reserve (RAP) were calculated as moving correlation coefficients between slow waves of ABP and ICP, and between slow waves of ICP pulse amplitude and mean ICP, respectively. The magnitude of 'slow waves' was derived using ICP low-pass spectral filtration. RESULTS: The most significant difference was found in the magnitude of slow waves that was persistently higher in patients with a favourable outcome (p<0.00004). In patients who died ICP was significantly higher (p<0.0001) and cerebrovascular pressure-reactivity (described by PRx) was compromised (p<0.024). In the same patients, pressure-volume compensatory reserve showed a gradual deterioration over time with a sudden drop of RAP when ICP started to rise, suggesting an overlapping disruption of the vasomotor response. CONCLUSION: Indices derived from ICP waveform analysis can be helpful for the interpretation of progressive intracranial hypertension in patients after brain trauma.
Resumo:
Neuronal autophagy is increased in numerous excitotoxic conditions including neonatal cerebral hypoxia-ischemia (HI). However, the role of this HI-induced autophagy remains unclear. To clarify this role we established an in vitro model of excitotoxicity combining kainate treatment (Ka, 30 µM) with hypoxia (Hx, 6% oxygen) in primary neuron cultures. KaHx rapidly induced excitotoxic death that was completely prevented by MK801 or EGTA. KaHx also stimulated neuronal autophagic flux as shown by a rise in autophagosome number (increased levels of LC3-II and punctate LC3 labeling) accompanied by increases in lysosomal abundance and activity (increased SQSTM1/p62 degradation, and increased LC3-II levels in the presence of lysosomal inhibitors) and fusion (shown using an RFP-GFP-LC3 reporter). To determine the role of the enhanced autophagy we applied either pharmacological autophagy inhibitors (3-methyladenine or pepstatinA/E64) or lentiviral vectors delivering shRNAs targeting Becn1 or Atg7. Both strategies reduced KaHx-induced neuronal death. A prodeath role of autophagy was also confirmed by the enhanced toxicity of KaHx in cultures overexpressing BECN1 or ATG7. Finally, in vivo inhibition of autophagy by intrastriatal injection of a lentiviral vector expressing a Becn1-targeting shRNA increased the volume of intact striatum in a rat model of severe neonatal cerebral HI. These results clearly show a death-mediating role of autophagy in hypoxic-excitotoxic conditions and suggest that inhibition of autophagy should be considered as a neuroprotective strategy in HI brain injuries.