995 resultados para Brain Neoplasms
Resumo:
In experimental animals, oncofoetal antigens1 have been found to be associated with both chemical-2 and virus-induced tumours3. In man the two best known oncofoetal antigens are the α-foetoprotein (AFP) described by both Abelev4 and Tatarinov5 and the carcinoembryonic antigen (CEA) of the human digestive system identified by Gold and Freedman6. We describe here a different human oncofoetal antigen, common to several types of carcinomas and various foetal organs. This antigen has been identified by rabbit antisera raised against semipurified fractions of colon carcinoma soluble extracts. Because of its β-immunoelectrophoretic mobility, this antigen will be referred to as β-oncofoetal antigen (BOFA).
Resumo:
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article.
Resumo:
OBJECTIVES: Jean Cruveilhier has always been described as a pioneer in pathological anatomy. Almost nothing has been reported concerning his exceptional methodology allying pre-mortem clinical description and syndromic classification of neurological and neurosurgical diseases, and post-mortem meticulous dissections. Cruveilhier's methodology announced the birth of the anatomoclinical method built up by Jean-Martin Charcot and the neurological French school during the 19th century. The aim of our work is to extract the quintessence of Cruveilhier's contributions to skull base pathology through his cogent clinical descriptions coupled with exceptional lithographs of anterior skull base, suprasellar and cerebello-pontine angle tumors. METHODS: We reviewed the masterwork of Jean Cruveilhier on pathological anatomy and we selected the chapters dedicated to central nervous system pathologies, mainly skull base diseases. A systematic review was performed on Pubmed/Medline and Google Scholar using the keywords "Jean Cruveilhier", "Skull base pathology", "Anatomoclinical method". RESULTS: Among his descriptions, Cruveilhier dedicated large chapters to neurosurgical diseases including brain tumors, cerebrovascular pathologies, malformations of the central nervous system, hydrocephalus, brain infections and spinal cord compressions. CONCLUSION: This work emphasizes on the role of Jean Cruveilhier in the birth of the anatomoclinical method particularly in neuroscience during a 19th century rich of epistemological evolutions toward an evidence-based medicine, through the prism of Cruveilhier's contribution to skull base pathology.
Resumo:
PURPOSE: This study was performed to determine the impact of perfusion and diffusion magnetic resonance imaging (MRI) sequences on patients during treatment of newly diagnosed glioblastoma. Special emphasis has been given to these imaging technologies as tools to potentially anticipate disease progression, as progression-free survival is frequently used as a surrogate endpoint. METHODS AND MATERIALS: Forty-one patients from a phase II temolozomide clinical trial were included. During follow-up, images were integrated 21 to 28 days after radiochemotherapy and every 2 months thereafter. Assessment of scans included measurement of size of lesion on T1 contrast-enhanced, T2, diffusion, and perfusion images, as well as mass effect. Classical criteria on tumor size variation and clinical parameters were used to set disease progression date. RESULTS: A total of 311 MRI examinations were reviewed. At disease progression (32 patients), a multivariate Cox regression determined 2 significant survival parameters: T1 largest diameter (p < 0.02) and T2 size variation (p < 0.05), whereas perfusion and diffusion were not significant. CONCLUSION: Perfusion and diffusion techniques cannot be used to anticipate tumor progression. Decision making at disease progression is critical, and classical T1 and T2 imaging remain the gold standard. Specifically, a T1 contrast enhancement over 3 cm in largest diameter together with an increased T2 hypersignal is a marker of inferior prognosis.
Resumo:
BACKGROUND: Adding temozolomide (TMZ) to standard radiotherapy as a first-line therapy for glioma may increase costs to a disproportionate degree compared with the resulting survival benefits. METHODS: Forty-six consecutive patients (28 males and 18 females; median age, 52 years; age range, 24-70 years) received concomitant TMZ with radiotherapy for 6 weeks followed by adjuvant TMZ for 6 cycles, and they were followed until disease recurrence and then until death. The authors assessed the costs associated with the four phases of treatment from a hospital-centered perspective. RESULTS: Treatment was discontinued early in 3 patients, 9 patients, and 15 patients during concomitant TMZ, before adjuvant TMZ, and during adjuvant TMZ, respectively. Karnofsky index values varied between 85% (at the beginning of treatment) and 76% (at the end of treatment). The nature of care after disease recurrence was diverse. Overall survival ranged from 1.4 months to 64.3 months (median, 15.8 months) and was better if surgical debulking could be carried out before treatment. Global costs amounted to Euros 39,092 +/- Euros 21,948 (concomitant TMZ, Euros 14,539 +/- Euros 4998; adjuvant TMZ, Euros 13,651 +/- Euros 4320; follow-up, Euros 6363 +/- Euros 6917; and recurrence, Euros 12,344 +/- Euros 18,327), with 53% of these costs being related to the acquisition of TMZ; this represented an eightfold increase in cost compared with radiotherapy alone. CONCLUSIONS: TMZ may be an effective but costly adjuvant outpatient therapy for patients with glioblastoma multiforme. Definite cost-effectiveness/utility must be assessed in a randomized Phase III trial.
Resumo:
Cerebral involvement is an uncommon complication of multiple myeloma. We report on a 64-year-old man hospitalized for a partial seizure. MRI showed two intracerebral lesions, which proved to be plasmacytomas. After complete staging, we retained the diagnosis of immunoglobulin G lambda-type multiple myeloma with CNS involvement. Cytogenetic analysis of plasma cells detected a deletion in the p53 gene at 17p13.1. Despite cranial radiotherapy and systemic chemotherapy, the patient's disease progressed rapidly and he died five months after diagnosis. What makes this case unusual is that overt multiple myeloma had been absent before cerebral involvement was discovered. It confirms the extremely poor prognosis of patients with CNS myeloma even in the presence of aggressive treatment. Cytogenetic abnormalities could be a marker of chromosomal and genetic instability, conferring to multiple myeloma a more aggressive profile.
Resumo:
Intratumoural (i.t.) injection of radio-iododeoxyuridine (IdUrd), a thymidine (dThd) analogue, is envisaged for targeted Auger electron- or beta-radiation therapy of glioblastoma. Here, biodistribution of [(125)I]IdUrd was evaluated 5 hr after i.t. injection in subcutaneous human glioblastoma xenografts LN229 after different intravenous (i.v.) pretreatments with fluorodeoxyuridine (FdUrd). FdUrd is known to block de novo dThd synthesis, thus favouring DNA incorporation of radio-IdUrd. Results showed that pretreatment with 2 mg/kg FdUrd i.v. in 2 fractions 0.5 hr and 1 hr before injection of radio-IdUrd resulted in a mean tumour uptake of 19.8% of injected dose (% ID), representing 65.3% ID/g for tumours of approx. 0.35 g. Tumour uptake of radio-IdUrd in non-pretreated mice was only 4.1% ID. Very low uptake was observed in normal nondividing and dividing tissues with a maximum concentration of 2.9% ID/g measured in spleen. Pretreatment with a higher dose of FdUrd of 10 mg/kg prolonged the increased tumour uptake of radio-IdUrd up to 5 hr. A competition experiment was performed in FdUrd pretreated mice using i.t. co-injection of excess dThd that resulted in very low tumour retention of [(125)I]IdUrd. DNA isolation experiments showed that in the mean >95% of tumour (125)I activity was incorporated in DNA. In conclusion, these results show that close to 20% ID of radio-IdUrd injected i.t. was incorporated in tumour DNA after i.v. pretreatment with clinically relevant doses of FdUrd and that this approach may be further exploited for diffusion and therapy studies with Auger electron- and/or beta-radiation-emitting radio-IdUrd.
Resumo:
Glioblastomas (GBMs) are the most frequent and malignant brain tumors in adults. Glucocorticoids (GCs) are routinely used in the treatment of GBMs for their capacity to reduce the tumor-associated edema. Few in vitro studies have suggested that GCs inhibit the migration and invasion of GBM cells through the induction of MAPK phosphatase 1 (MKP-1). Macrophage migration inhibitory factor (MIF), an endogenous GC antagonist is up-regulated in GBMs. Recently, MIF has been involved in tumor growth and migration/invasion and specific MIF inhibitors have been developed on their capacity to block its enzymatic tautomerase activity site. In this study, we characterized several glioma cell lines for their MIF production. U373 MG cells were selected for their very low endogenous levels of MIF. We showed that dexamethasone inhibits the migration and invasion of U373 MG cells, through a glucocorticoid receptor (GR)- dependent inhibition of the ERK1/2 MAPK pathway. Oppositely, we found that exogenous MIF increases U373 MG migration and invasion through the stimulation of the ERK1/2 MAP kinase pathway and that this activation is CD74 independent. Finally, we used the Hs 683 glioma cells that are resistant to GCs and produce high levels of endogenous MIF, and showed that the specific MIF inhibitor ISO-1 could restore dexamethasone sensitivity in these cells. Collectively, our results indicate an intricate pathway between MIF expression and GC resistance. They suggest that MIF inhibitors could increase the response of GBMs to corticotherapy.
Resumo:
Resistance to alkylating agents via direct DNA repair by O(6)-methylguanine methyltransferase (MGMT) remains a significant barrier to the successful treatment of patients with malignant glioma. The relative expression of MGMT in the tumor may determine response to alkylating agents, and epigenetic silencing of the MGMT gene by promoter methylation plays an important role in regulating MGMT expression in gliomas. MGMT promoter methylation is correlated with improved progression-free and overall survival in patients treated with alkylating agents. Strategies to overcome MGMT-mediated chemoresistance are being actively investigated. These include treatment with nontoxic pseudosubstrate inhibitors of MGMT, such as O(6)-benzylguanine, or RNA interference-mediated gene silencing of MGMT. However, systemic application of MGMT inhibitors is limited by an increase in hematologic toxicity. Another strategy is to deplete MGMT activity in tumor tissue using a dose-dense temozolomide schedule. These alternative schedules are well tolerated; however, it remains unclear whether they are more effective than the standard dosing regimen or whether they effectively deplete MGMT activity in tumor tissue. Of note, not all patients with glioblastoma having MGMT promoter methylation respond to alkylating agents, and even those who respond will inevitably experience relapse. Herein we review the data supporting MGMT as a major mechanism of chemotherapy resistance in malignant gliomas and describe ongoing studies that are testing resistance-modulating strategies.
Resumo:
Tumor-initiating cells with stem cell properties are believed to sustain the growth of gliomas, but proposed markers such as CD133 cannot be used to identify these cells with sufficient specificity. We report an alternative isolation method purely based on phenotypic qualities of glioma-initiating cells (GICs), avoiding the use of molecular markers. We exploited intrinsic autofluorescence properties and a distinctive morphology to isolate a subpopulation of cells (FL1(+)) from human glioma or glioma cultures. FL1(+) cells are capable of self-renewal in vitro, tumorigenesis in vivo and preferentially express stem cell genes. The FL1(+) phenotype did not correlate with the expression of proposed GIC markers. Our data propose an alternative approach to investigate tumor-initiating potential in gliomas and to advance the development of new therapies and diagnostics.
Resumo:
The integrin family of cell adhesion receptors is emerging as a promising target of anticancer therapy. AlphaVbeta3 and alphaVbeta5 integrins are overexpressed on both glioma cells and tumor vasculature. Cilengitide, the most advanced specific integrin inhibitor in oncology, has shown antitumor activity against glioma in early clinical trials. Durable remissions have been observed in phase I and phase II trials for recurrent glioblastoma (GBM) with both lower and higher doses of cilengitide. Pilot trials in newly diagnosed glioblastoma in conjunction with standard chemoradiotherapy have been encouraging. Preclinical data suggest synergy with concomitant chemo- and radiation therapy. A pivotal phase III study (CENTRIC) in newly diagnosed GBM patients is currently recruiting. This paper summarizes the current understanding of the role of integrins and their inhibition in gliomagenesis. The background and design of ongoing trials are outlined.