873 resultados para Box Butte Experiment farm
Resumo:
Saline Valley Farms was an experiment in cooperative farming and living begun in 1932 by Harold S. Gray.
Resumo:
Saline Valley Farms was an experiment in cooperative farming and living begun in 1932 by Harold S. Gray.
Resumo:
Saline Valley Farms was an experiment in cooperative farming and living begun in 1932 by Harold S. Gray.
Resumo:
Saline Valley Farms was an experiment in cooperative farming and living begun in 1932 by Harold S. Gray.
Resumo:
Saline Valley Farms was an experiment in cooperative farming and living begun in 1932 by Harold S. Gray.
Resumo:
Saline Valley Farms was an experiment in cooperative farming and living begun in 1932 by Harold S. Gray.
Resumo:
Saline Valley Farms was an experiment in cooperative farming and living begun in 1932 by Harold S. Gray.
Resumo:
Saline Valley Farms was an experiment in cooperative farming and living begun in 1932 by Harold S. Gray.
Resumo:
Saline Valley Farms was an experiment in cooperative farming and living begun in 1932 by Harold S. Gray.
Resumo:
Saline Valley Farms was an experiment in cooperative farming and living begun in 1932 by Harold S. Gray.
Resumo:
Saline Valley Farms was an experiment in cooperative farming and living begun in 1932 by Harold S. Gray.
Resumo:
Cover title.
Resumo:
Soil porosity is the fraction of total volume occupied by pores or voids measured at matric potential 0. To measure soil porosity, soil samples were taken from each plot using sample rings with an internal diameter of 57 mm and height of 40.5 mm (inner volume of Vs=100 cm3). The samples were placed on a sand bed box with water level set to allow saturation of the samples with water. After 48 h the samples were weighed (ms), oven dried at 105 °C and weighed again to determine the dry weight (md). We calculated soil porosity (n [%]) using the density of water (?w=1 g cm?3), n=100 ? (mw-md) / (?w?Vs). To account for the spatial variation of soil properties, three replicates were taken per plot, approximately 2, 3 and 4 weeks after the flood that occurred at the field site during June 2013. Data are the average soil porosity values per plot. All data where measured in the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown in the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, or 4 functional groups). Plots were maintained by bi-annual weeding and mowing.
Resumo:
The swine breeder rearing environment directly affects the animal's performance. This research had the objective of developing a thermal, aerial and acoustic environmental evaluation pattern for boar housing. The experiment was carried on a commercial swine farm in Salto County -SP, Brazil. Thermal, aerial and acoustic environment data of rearing conditions were registered. Data were statistically analyzed using as threshold the ideal housing environment that leads to animal welfare. Results showed that ambient temperature was around 70% beyond normal range, while air relative humidity, air speed and gases concentration were within threshold values. Noise level data besides being within normal range did not present large variation. In relation to the fuzzy logic analysis it was possible to build up a scenario which indicated that the best welfare indexes to male swine breeders happens when thermal comfort index are close to 80%, and noise level is lower than 40 dB. In the other hand the worst welfare index occur in the sector where the thermal comfort values are below 40% at the same time that the noise level is higher than 80 dB leading to inadequate conditions to the animal, and may directly interfere in the reproduction system performance.
Resumo:
We describe the experimental apparatus and the methods to achieve Bose-Einstein condensation in 87Rb atoms. Atoms are first laser cooled in a standard double magneto-optical trap setup and then transferred into a QUIC trap. The system is brought to quantum degeneracy selectively removing the hottest atoms from the trap by radio-frequency radiation. We also present the main theoretical aspects of the Bose-Einstein condensation phenomena in atomic gases.