986 resultados para Boundary Inhomogeneity Method
Resumo:
Since the epoch-making "memoir" of Saint-Venant in 1855 the torsion of prismatic and cilindrical bars has reduced to a mathematical problem: the calculation of an analytical function satisfying prescribed boundary values. For over one century, till the first applications of the F.E.M. to the problem, the only possibility of study in irregularly shaped domains was the beatiful, but limitated, theory of complex function analysis, several functional approaches and the finite difference method. Nevertheless in 1963 Jaswon published an interestingpaper which was nearly lost between the splendid F. E.M. boom. The method was extended by Rizzo to more complicated problems and definitively incorporated to the scientific community background through several lecture-notes of Cruse recently published, but widely circulated during past years. The work of several researches has shown the tremendous possibilities of the method which is today a recognized alternative to the well established F .E. procedure. In fact, the first comprehensive attempt to cover the method, has been recently published in textbook form. This paper is a contribution to the implementation of a difficulty which arises if the isoparametric elements concept is applicated to plane potential problems with sharp corners in the boundary domain. In previous works, these problems was avoided using two principal approximations: equating the fluxes round the corner or establishing a binode element (in fact, truncating the corner). The first approximation distortes heavily the solution in thecorner neighbourhood, and a great amount of element is neccesary to reduce its influence. The second is better suited but the price payed is increasing the size of the system of equations to be solved. In this paper an alternative formulation, consistent with the shape function chosen in the isoparametric representation, is presented. For ease of comprehension the formulation has been limited to the linear element. Nevertheless its extension to more refined elements is straight forward. Also a direct procedure for the assembling of the equations is presented in an attempt to reduce the in-core computer requirements.
Resumo:
This paper deals with the boundary element method (BEM) p-convergence approach applied to three-dimensional problems governed by Laplace's equation. The advantages derived from the boundary discretization and hierarchical interpolation functions are collated in order to minimize human effort in preparation of input data and improve numerical results.
Resumo:
In this paper some aspects of the use of non-reflecting boundaries in dynamic problems, analyzed in time domain, are considered. Current trends for treating the above mentioned problems are summarized with a particular emphasis on the use of numerical techniques, such as Boundary Element Method (BEM) or mixed and hybrid formulations, Finite Element Method (FEM) plus BEM. As an alternative to these methods, an easy time domain boundary condition, obtained from the well known consistent transmitting boundary developed by Waas for frequency domain analysis, can be applied to represent the reactions of the unbounded soil on the interest zone. The behaviour of this proposed boundary condition is studied when waves of different frequency to the one used for its obtention are acting on the physical edge of the model. As an application example,an analysis is made of the soil-structure interaction of a rigid strip foundation on a horizontal non-linear elastic layer on bed rock. The results obtained suggest the need of time domain solutions for this type of problem
Resumo:
In the present work, a three-dimensional (3D) formulation based on the method of fundamental solutions (MFS) is applied to the study of acoustic horns. The implemented model follows and extends previous works that only considered two-dimensional and axisymmetric horn configurations. The more realistic case of 3D acoustic horns with symmetry regarding two orthogonal planes is addressed. The use of the domain decomposition technique with two interconnected sub-regions along a continuity boundary is proposed, allowing for the computation of the sound pressure generated by an acoustic horn installed on a rigid screen. In order to reduce the model discretization requirements for these cases, Green’s functions derived with the image source methodology are adopted, automatically accounting for the presence of symmetry conditions. A strategy for the calculation of an optimal position of the virtual sources used by the MFS to define the solution is also used, leading to improved reliability and flexibility of the proposed method. The responses obtained by the developed model are compared to reference solutions, computed by well-established models based on the boundary element method. Additionally, numerically calculated acoustic parameters, such as directivity and beamwidth, are compared with those evaluated experimentally.
Resumo:
The boundary element method (BEM) was used to study galvanic corrosion using linear and logarithmic boundary conditions. The linear boundary condition was implemented by using the linear approach and the piecewise linear approach. The logarithmic boundary condition was implemented by the piecewise linear approach. The calculated potential and current density distribution were compared with the prior analytical results. For the linear boundary condition, the BEASY program using the linear approach and the piecewise linear approach gave accurate predictions of the potential and the galvanic current density distributions for varied electrolyte conditions, various film thicknesses, various electrolyte conductivities and various area ratio of anode/cathode. The 50-point piecewise linear method could be used with both linear and logarithmic polarization curves.
Resumo:
A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.
Resumo:
We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.
Resumo:
Purpose – To propose and investigate a stable numerical procedure for the reconstruction of the velocity of a viscous incompressible fluid flow in linear hydrodynamics from knowledge of the velocity and fluid stress force given on a part of the boundary of a bounded domain. Design/methodology/approach – Earlier works have involved the similar problem but for stationary case (time-independent fluid flow). Extending these ideas a procedure is proposed and investigated also for the time-dependent case. Findings – The paper finds a novel variation method for the Cauchy problem. It proves convergence and also proposes a new boundary element method. Research limitations/implications – The fluid flow domain is limited to annular domains; this restriction can be removed undertaking analyses in appropriate weighted spaces to incorporate singularities that can occur on general bounded domains. Future work involves numerical investigations and also to consider Oseen type flow. A challenging problem is to consider non-linear Navier-Stokes equation. Practical implications – Fluid flow problems where data are known only on a part of the boundary occur in a range of engineering situations such as colloidal suspension and swimming of microorganisms. For example, the solution domain can be the region between to spheres where only the outer sphere is accessible for measurements. Originality/value – A novel variational method for the Cauchy problem is proposed which preserves the unsteady Stokes operator, convergence is proved and using recent for the fundamental solution for unsteady Stokes system, a new boundary element method for this system is also proposed.
Resumo:
In this paper, three iterative procedures (Landweber-Fridman, conjugate gradient and minimal error methods) for obtaining a stable solution to the Cauchy problem in slow viscous flows are presented and compared. A section is devoted to the numerical investigations of these algorithms. There, we use the boundary element method together with efficient stopping criteria for ceasing the iteration process in order to obtain stable solutions.
Resumo:
The inverse problem of determining a spacewise-dependent heat source for the parabolic heat equation using the usual conditions of the direct problem and information from one supplementary temperature measurement at a given instant of time is studied. This spacewise-dependent temperature measurement ensures that this inverse problem has a unique solution, but the solution is unstable and hence the problem is ill-posed. We propose a variational conjugate gradient-type iterative algorithm for the stable reconstruction of the heat source based on a sequence of well-posed direct problems for the parabolic heat equation which are solved at each iteration step using the boundary element method. The instability is overcome by stopping the iterative procedure at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented which have the input measured data perturbed by increasing amounts of random noise. The numerical results show that the proposed procedure yields stable and accurate numerical approximations after only a few iterations.
Resumo:
In this article, an iterative algorithm based on the Landweber-Fridman method in combination with the boundary element method is developed for solving a Cauchy problem in linear hydrostatics Stokes flow of a slow viscous fluid. This is an iteration scheme where mixed well-posed problems for the stationary generalized Stokes system and its adjoint are solved in an alternating way. A convergence proof of this procedure is included and an efficient stopping criterion is employed. The numerical results confirm that the iterative method produces a convergent and stable numerical solution. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007
Resumo:
The problem considered is that of determining the fluid velocity for linear hydrostatics Stokes flow of slow viscous fluids from measured velocity and fluid stress force on a part of the boundary of a bounded domain. A variational conjugate gradient iterative procedure is proposed based on solving a series of mixed well-posed boundary value problems for the Stokes operator and its adjoint. In order to stabilize the Cauchy problem, the iterations are ceased according to an optimal order discrepancy principle stopping criterion. Numerical results obtained using the boundary element method confirm that the procedure produces a convergent and stable numerical solution.
Resumo:
Due to manufacturing or damage process, brittle materials present a large number of micro-cracks which are randomly distributed. The lifetime of these materials is governed by crack propagation under the applied mechanical and thermal loadings. In order to deal with these kinds of materials, the present work develops a boundary element method (BEM) model allowing for the analysis of multiple random crack propagation in plane structures. The adopted formulation is based on the dual BEM, for which singular and hyper-singular integral equations are used. An iterative scheme to predict the crack growth path and crack length increment is proposed. This scheme enables us to simulate the localization and coalescence phenomena, which are the main contribution of this paper. Considering the fracture mechanics approach, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of multi-fractured domains, loaded up to rupture, are considered to illustrate the applicability of the proposed method. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work deals with nonlinear geometric plates in the context of von Karman`s theory. The formulation is written such that only the boundary in-plane displacement and deflection integral equations for boundary collocations are required. At internal points, only out-of-plane rotation, curvature and in-plane internal force representations are used. Thus, only integral representations of these values are derived. The nonlinear system of equations is derived by approximating all densities in the domain integrals as single values, which therefore reduces the computational effort needed to evaluate the domain value influences. Hyper-singular equations are avoided by approximating the domain values using only internal nodes. The solution is obtained using a Newton scheme for which a consistent tangent operator was derived. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This article presents a BEM formulation developed particularly for analysis of plates reinforced by rectangular beams. This is an extended version of a Previous paper that only took into account bending effects. The problem is now re-formulated to consider bending and membrane force effects. The effects of the reinforcements are taken into account by using a simplified scheme that requires application of ail initial stress field to locally correct the bending and stretching stiffness of the reinforcement regions. The domain integrals due to the presence of the reinforcements are then transformed to the reinforcement/plate interface. To reduce the number of degrees of freedom related to the presence of the reinforcement, the proposed model was simplified to consider only bending and stretching rigidities in the direction of the beams. The complete model can be recovered by applying all six internal force correctors, corresponding to six degrees of freedom per node. Examples are presented to confirm the accuracy of the formulation and to illustrate the level of simplification introduced by this strong reduction in the number of degrees of freedom. (C) 2008 Elsevier Ltd. All rights reserved.